Dihydroquercetin application for improving productivity, physiological parameters, production quality and overcoming stress in pigs and poultry. A review
Sonia Ivanova
, Mariyana Petrova, Tanya Nikolova
, Vasil Pirgozliev
Abstract: This review aims to identify the effects of the flavonoid dihydroquercetin (DHQ) on performance, physiological parameters and biochemical indicators of the body, as well as its application as an adaptogen to reduce stress and an improvement of production quality in pigs and poultry. It was concluded that DHQ successfully affects carbohydrate and fat metabolism, in direction improvements of the physiological parameters. DHQ has the ability to reduce the content of cholesterol in the blood by lowering the levels of genes responsible for its synthesis. DHQ prevents the development of lipid peroxidation and increases the body's antioxidant defense. Dihydroquercetin has proven cardiovascular protective and antiatherosclerotic effects and can be used effectively for treatment and prevention. DHQ has a hepatoprotective effect as well, expressed in improving liver lipid metabolism, increasing the activity of antioxidant enzymes, while reducing liver lesions and necrotic processes. The effects of DHQ are shown very well in highly productive animals as stress reducer and as an improver of the product quality from pigs and poultry. Supplementation of the basal diet with phytonutrients such as DHQ results in а reduced accumulation of primary and secondary products of lipid oxidation in meat during storage and is a promising strategy for increasing the oxidative stability of lean pork and fat. The listed positive effects of dihydroquercetin indicate that it has the potential for successful application in pig farming and future research. Аs a feed additive in monogastric nutrition, DHQ has a potential to counteract mycotoxin-induced intestinal toxicity.
Keywords: antioxidants; dihydroquercetin; phytonutrients; pigs; poultry
Citation: Ivanova, S., Petrova, M., Nikolova, T. & Pirgozliev, V. (2024). Dihydroquercetin application for improving productivity, physiological parameters, production quality and overcoming stress in pigs and poultry. A review. Bulgarian Journal of Animal Husbandry, 61(4), 26-39 (Bg).
References: (click to open/close) | Akinmoladun, A. C., Oladejo, C. O., Josiah, S. S., Famusiwa, C. D., Ojo, O. B. & Olaleye, M. T. (2018). Catechin, quercetin and taxifolin improve redox and biochemical imbalances in rotenone-induced hepatocellular dysfunction: Relevance for therapy in pesticide-induced liver toxicity? Pathophysiology, 25(4), 365-371. https://doi.org/10.1016/j.pathophys.2018.07.002. Arias, N., Macarulla, M. T., Aguirre, L., Martínez-Castaño, M. G. & Portillo, M. P. (2014). Quercetin can reduce insulin resistance without decreasing adipose tissue and skeletal muscle fat accumulation. Genes Nutr., 9(1), 361. https://doi.org/10.1007/s12263-013-0361-7. Artemeva, O. A., Pereselkova, D. A. & Fomichev, Yu. P. (2015). Dihydroquercetin, the bioactive substance, to be used against pathogenic microorganisms as an alternative to antibiotics. Sel’skokhoz Biol [Agric Biol], 50(4), 513-519. Balev, D., Vlahova - Vangelova, D., Mihalev, K., Shikov, V., Dragoev, S. & Nikolov, V. (2015). Application of natural dietary antioxidants in broiler feeds. Journal of Mountain Agriculture on the Balkans, 18(2), 224-232. Biе, J., Sepodes, B., Fernandes, P. C. B. & Ribeiro, M. H. L. (2023). Polyphenols in Health and Disease: Gut Microbiota, Bioaccessibility, and Bioavailability. Compounds, 3, 40-72. https://doi.org/10.3390/compounds3010005. Bogolyubova, N. V., Chabaev, M. G., Fomichev, Yu. P., Tsis, E. Yu., Semenova, A. A. & Nekrasov, R. V. (2019). Ways to reduce adverse effects of stress in pigs using nutritional factors. Ukr J Ecol., 9(2), 239-245. Bokhtiar, S. M., Islam, M. R., Ahmed, M. J., Rahman, A. & Rafiq, K. (2023). Assessment of Heavy Metals Contamination and Antimicrobial Drugs Residue in Broiler Edible Tissues in Bangladesh. Antibiotics, 12(4) 662. https://doi.org/10.3390/antibiotics12040662. Bule, M., Abdurahman, A., Nikfar, S., Abdollahi, M. & Amini, M. (2019). Antidiabetic effect of quercetin: A systematic review and meta-analysis of animal studies. Food and Chemical Toxicology, 125, 494-502. https://doi.org/10.1016/j.fct.2019.01.037. Chen, Z., Yuan, Q., Xu, G., Chen, H., Lei, H. & Su, I. (2018). Effects of quercetin on proliferation and H2O2- induced apoptosis of intestinal porcine enterocyte cells. Molecules, 23(8), 2012. https://doi.org/10.3390/molecules23082012. de Oliveira, M. R., Nabavi, S. M., Braidy, N., Setzer, W. N., Ahmed, T. & Nabavi, S. F. (2016). Quercetin and the mitochondria: A mechanistic view. Biotechnol Adv., 34(5), 532-549. https://doi.org/10.1016/j.biotechadv.2015.12.014. Dragoev, S. G., Staykov, A. S., Vassilev, K. P., Balev, D. K. & Vlahova-Vangelova, D. B. (2014a). Improvement of the Quality and the Shelf Life of the High Oxygen Modified Atmosphere Packaged Veal by Superficial Spraying with Dihydroquercetin Solution. International Journal of Food Science, Article ID 629062, 10. http://dx.doi.org/10.1155/2014/629062. Dragoev, S., Balev, D., Ivanov, G., Nikolova-Damyanova, B., Grozdeva, T., Filizov, E. & Vassilev, K. (2014b). Effect of superficial treatment with new natural antioxidant on salmon (Salmo salar) lipid oxidation. Acta Alimentaria, 43, 1. http://doi.org/10.1556/aalim.43.2014.1.1. Durmic, Z. & Blache, D. (2012).Bioactive plants and plant products: Effects on animal function, health and welfare.Animal Feed Science and Technology, 176, 150-162. https://doi.org/10.1016/j.anifeedsci.2012.07.018. European Cort of Auditors (2018), Activity Report, available at: European Court of Auditors 2018 Activity Report, last accessed 11.06.2024. Filipe, J. F., Herrera, V., Curone, G., Vigo, D. & Riva, F. (2020). Floods, Hurricanes, and Other Catastrophes: A Challenge for the Immune System of Livestock and Other Animals. Front Vet Sci.,7, 16. DOI: 10.3389/fvets.2020.00016. Fomichev, Y., Nikanova, L. & Lashin, A. (2016). The effectiveness of using diнydroquercetin (taxifolin) in animal husbandry, poultry and apiculture for prevention of metabolic disorders, higher antioxidative capacity, better resistence and realisation of a productive potential of organism. Journal of International Scientific Publications: Agriculture & Food, 4, 140-159. Fomichev, Y. P., Nikanova, L. A., Dorozhkin, V. I., Torshkov, A., Romanenko, A., Eskov, E., Semenova, A., Gonotsky, V., Dunaev, A., Yarosevich, G., Lashin, S. & Stolnaya, N. (2017). Dihydroquercetin and arabinogalactan — natural bioregulators in human and animal life, application in agriculture and food industry. “Scientific Library” Publishing House, Moscow, 701 (Ru). Fomichev, Yu. P., Bogolyubova, N. V., Nekrasov, R. V., Chabaev, M. G., Rykov, R. A. & Semenova, A. A. (2020). Physiological and biochemical effects of two feed antioxidants in modeling technological stress in pigs (Sus scrofa domesticus Erxleben, 1777). Sel'skokhozyaistvennaya Biologiya [Agricultural Biology], 55(4), 750-769 (Ru). Funakoshi, T., Kanzaki, N., Otsuka, Y., Izumo, T., Shibata, H., Machida, S. (2018). Quercetin inhibits adipogenesis of muscle progenitor cells in vitro. Biochem Biophys Rep., 13, 39–44. http://doi.org/10.1016/j.bbrep.2017.12.003. Grenier, B. & Applegate, T. J. (2013) Modulation of intestinal functions following mycotoxin ingestion: Meta-analysis of published experiments in animals. Toxins, 5, 396–430. Han, G., Liao, H., Liu, X., Zhang, J. & Ni, M. (2009). Study on the Fat-related Genes of Chicken. International Journal of Biology, 1(1). www.ccsenet.org/journal.html. Henagan, T. M., Lenard, N. R., Gettys, T. W. & Stewart, L. K. (2014). Dietary quercetin supplementation in mice increases skeletal muscle PGC1α expression, improves mitochondrial function and attenuates insulin resistance in a time-specific manner. PLoS One. 21, 9(2), e89365. doi: 10.1371/journal.pone.0089365. Hollinger, K., Shanely, R. A, Quindry, J. C. & Selsby, J. T. (2015). Long-term quercetin dietary enrichment decreases muscle injury in mdx mice, Clinical Nutrition, 34(3), 515-522 https://doi.org/10.1016/j.clnu.2014.06.008. Inoue, T., Fu, B., Nishio, M., Tanaka, M., Kato, H., Tanaka, M., Itoh, M., Yamakage, H., Och, I. K., Ito, A., Shiraki, Y., Saito, S., Ihara, M., Nishimura, H., Kawamoto, A., Inoue, S., Saeki, K., Enomoto, A., Suganami, T. & Satoh-Asahara, N. (2023). Novel Therapeutic Potentials of Taxifolin for Obesity-Induced Hepatic Steatosis, Fibrogenesis, and Tumorigenesis. Nutrients 10, 15(2), 350. https://doi.org/10.3390/nu15020350. Itaya, S. & Igarashi, K. (1992). Effects of Taxifolin on the Serum Cholesterol Level in Rats, Bioscience, Biotechnology, and Biochemistry, 56(9), 1492–1494. https://doi.org/10.1271/bbb.56.1492. Ivanova, S., Nakev, J., Nikolova, T., Vlahova-Vangelova, D., Balev, D., Dragoev, S., Gerrard, D., Grozlekova, L. & Tashkova, D. (2021). Effect of new livestock feeds’ phytonutrients on productivity, carcass composition and meat quality in pigs. Bulgarian Journal of Agricultural Science, 27(6), 1178–1186. Ivanova, S., Nikolova, T., Pirgozliev, V. & Nenova, R.(2024). Effect of dihydroquercetin on performance, back fat thickness and blood biochemical indices in fattening pigs. Scientific papers. Series D. Animal Science. (in press). Jia, Q., Cao, H., Shen, D., Li, S., Yan, L., Chen, C., Xing, S. & Dou, F. (2019). Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARγ, LXRα and ABCA1. Int J Mol Med., 44(3), 893-902. https://doi.org/10.3892/ijmm.2019.4263. Jo, J., Choi, M. Y. & Koh, D. S. (2009). Beneficial effects of intercellular interactions between pancreatic islet cells in blood glucose regulation. J Theor Biol., 257(2), 312-319. https://doi.org/10.1016/j.jtbi.2008.12.005. Joshi, B., Panda, S. K., Jouneghani, R. S., Liu, M., Parajuli, N., Leyssen, P., Neyts, J. & Luyten, W. (2020) Antibacterial, Antifungal, Antiviral, and Anthelmintic Activities of Medicinal Plants of Nepal Selected Based on Ethnobotanical Evidence. Evid Based Complement Alternat Med., 1043471. https://doi.org/10.1155/2020/1043471. Jung, C. H., Cho, I., Ahn, J. & Jeon, T. (2012). Quercetin Reduces High-Fat Diet-Induced Fat Accumulation in the Liver by Regulating Lipid Metabolism Genes. Phytotherapy Research, 27(1), 139-143. https://doi.org/10.1002/ptr.4687. Juzwiak, S., Wojcicki, J., Mokrzycki, K., Marchlewicz, M., Białecka, M., Wenda‑Rozewicka, L., Gawronska‑Szklarz, B. & Drozdzik, M. (2015). Effect of quercetin on experimental yperlipidemia and atherosclerosis in rabbits. Pharmacol Rep, 57, 604‑609. Kawabata, K., Mukai, R. & Ishisaka, A. (2015). Quercetin and related polyphenols: new insights and implications for their bioactivity and bioavailability. Food Funct., 6(5), 1399-1417. Kim, G. N., Kwon, Y. I. & Jang, H. D. (2011). Protective mechanism of quercetin and rutin on 2,2'-azobis(2-amidinopropane)dihydrochloride or Cu2+-induced oxidative stress in HepG2 cells. Toxicol In Vitro., 25(1), 138-144. https://doi.org/10.1016/j.tiv.2010.10.005. Kuipers, E. N., Dam, A. D. V., Held, N. M., Mol, I. M., Houtkooper, R. H., Rensen, P. C. N. & Boon, M. R. (2018). Quercetin Lowers Plasma Triglycerides Accompanied by White Adipose Tissue Browning in Diet-Induced Obese Mice. Int J Mol Sci., 19(6), 1786. https://doi.org/10.3390/ijms19061786. Lamson, D. W. & Brignall, M. S. (2000) Antioxidants and Cancer III: Quercetin. Altern. Med. Rev., 5(3):196-208. Lara‑Guzman, O. J., Tabares‑Guevara, J. H., Leon‑Varela, Y. M., Alvarez, R. M., Roldan, M., Sierra, J. A., Londono‑Londono, J. A., Ramirez‑Pineda, J. R. (2012). Proatherogenic macrophage activities are targeted by the flavonoid quercetin. J. Pharmacol Exp Ther, 343, 296‑306. Lee, S. M., Moon, J., Cho, Y., Chung, J. H. & Shin, M. J. (2013). Quercetin up‑regulates expressions of peroxisome proliferator‑activated receptor γ, liver X receptorα, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line. Nutr Res, 33, 136‑143. Li, A-N., Li, S., Zhang, Y. J., Xu, X. R., Chen, Y. M. & Li H. B. (2014). Resources and biological activities of natural polyphenols. Nutrients, 6(12), 6020-6047. https://doi.org/10.3390/nu6126020. Li, E., Horn, N. & Ajuwon, K. M. (2021). Mechanisms of deoxynivalenol-induced endocytosis and degradation of tight junction proteins in jejunal IPEC-J2 cells involve selective activation of the MAPK pathways. Arch. Toxicol., 95, 2065–2079. Lv, H., Li, Y., Xue, C., Dong, N., Bi, C. & Shan, A. (2022). Aquaporin: Targets for dietary nutrients to regulate intestinal health. J. Anim. Physiol. Anim. Nutr., 106, 167–180. Mahdavi-Roshan, M., Mozafarihashjin, M., Shoaibinobarian, N., Ghorbani, Z., Salari, A., Savarrakhsh, A. & Hekmatdoost, A. (2022) Evaluating the use of novel atherogenicity indices and insulin resistance surrogate markers in predicting the risk of coronary artery disease: a case‒control investigation with comparison to traditional biomarkers. Lipids Health Dis., 27(1), 126. doi:10.1186/s12944-022-01732-9. Manach, C., Williamson, G., Morand, C., Scalbert, A. & Rémésy, C. (2005). Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr., 81(1), 230-242. Manso, T., Lores, M. & de Miguel, T. (2022) Antimicrobial Activity of Polyphenols and Natural Polyphenolic Extracts on Clinical Isolates. Antibiotics, 11(1), 46. https://doi.org/10.3390/antibiotics11010046. Mukai, R., Matsui, N., Fujikura, Y., Matsumoto, N., Hou, D.-X., Kanzaki, N., Shibata, H., Horikawa, M., Iwasa, K., Hirasaka, K., Nikawa, T. & Terao, J. (2016). Preventive effect of dietary quercetin on disuse muscle atrophy by targeting mitochondria in denervated mice. The Journal of Nutritional Biochemistry, 31, 67-76. https://doi.org/10.1016/j.jnutbio.2016.02.001. Nikanova, L. A. (2019). The Use of Dihydroquercetin and Arabinogalactan in the Diet of Weaned Piglets. Vestnik APK Verhnevolzh`ia , 47-50. (Rus) https://doi.org/10.35694/YARCX.2019.47.3.010. Nikanova, L. & Fomichev, Y. (2012). The role of feed additives in mitigating environmental temperature stress in pigs, Russian Journal of Problems of Veterinary Sanitation, Hygiene and Ecology, 1(7), 81-86 (Ru). Pardo, Z., Fernández-Fígares, I., Lachica, M., Lara, L., Nieto, R. & Seiquer, I. (2021) Impact of Heat Stress on Meat Quality and Antioxidant Markers in Iberian Pigs. Antioxidants, 10(12), 1911. https://doi.org/10.3390/antiox10121911. Patel, R. V, Mistry, B. M, Shinde, S. K, Syed, R., Singh, V. & Shin, H. S. (2018) Therapeutic potential of quercetin as a cardiovascular agent. Eur J Med Chem., 155, 889-904. https://doi.org/10.1016/j.ejmech.2018.06.053. Pirgozliev, V., Mansbridge, S., Whiting, .I, Arthur, C., Rose, S. & Atanasov, A. (2021) Antioxidant status and growth performance of broiler chickens fed diets containing graded levels of supplementary dihydroquercetin. Res Vet Sci., 141, 63-65. https://doi.org/10.1016/j.rvsc.2021.10.001. Pirgozliev, V., Westbrook, C., Woods, S., Karagecili, M. R., Karadas, F., Rose, S. P. & Mansbridge, S. C. (2018). Feeding dihydroquercetin to broiler chickens. British Poultry Science, 60(3). https://doi.org/10.1080/00071668.2018.1556387. Pirgozliev, V. R., Mansbridge, S. C., Westbrook, C. A., Woods, S. L., Rose, S. P., Whiting, I. M, Yovchev, D. G., Atanasov, A. G., Kljak, K., Staykova, G. P., Ivanova, S. G., Karakeçili, M. R., Karadaş, F. & Stringhini, J. H. (2020). Feeding dihydroquercetin and vitamin E to broiler chickens reared at standard and high ambient temperatures. Arch Anim Nutr., 74(6), 496-511. https://doi.org/10.1080/1745039X.2020.1820807. Plotnikov, M., Tyukavkina, N. & Plotnikova, T. (2005). Medicines based on dikvertin. Tomsk: Tomsk University Press, 228. Rudakov, О. & Rudakova, L. (2020). Dihydroquercetin in meat products. Meat Technology Magazine, 15, 44-47 (Ru). 10.33465/2308-2941-2020-05-44-47. Semenova, A., Kuznetsova, T., Nasonova, V., Nekrasov, R. & Bogolubova, N. (2020). Effect of modelled stress and adaptogens on microstructural characteristics of pork from fast-growing hybrid animals. Potravinarstvo Slovak Journal of Food Sciences, 14, 656–663. https://doi.org/10.5219/1388. Shagaeva, N. N., Kolobov, S. V. & Zachesova, I. A. (2021). The effect of dihydroquercetin on the stability of consumer properties of chopped semi-finished meat. EDP Sciences, 285. Sobhani, M., Farzaei, M. H., Kiani, S. & Khodarahmi, R. (2020). Immunomodulatory; Anti-inflammatory/antioxidant Effects of Polyphenols: A Comparative Review on the Parental Compounds and Their Metabolites. Food Reviews International, 37(8), 759–811. https://doi.org/10.1080/87559129.2020.1717523. Tapas, A. R., Sakarkar, D. M., Kakde, R. B., Famusiwa, C. D., Ojo, O. B. & Olaleye, M. T. (2008). Flavonoids as nutraceuticals. Trop. J. Pharm. Res., 7, 1089-1099. Tatiyaborworntham, N., Oz, F., Richards, M. P. & Wu, H. (2022). Paradoxical effects of lipolysis on the lipid oxidation in meat and meat products. Food Chemistry: X, 14, 100317. https://doi.org/10.1016/j.fochx.2022.1003. Untea, A. E., Saracila, M. & Vlaicu, P. A. (2023).Feeding Strategies and Nutritional Quality of Animal Products. Agriculture, 13, 1788. https://doi.org/10.3390/agriculture13091788. Vlahova-Vangelova, D. B., Balev, D. K., Ivanova, S. G., Nakev, J. L., Nikolova, T. I., Dragoev, S. G. & Gerrard, D. E. (2020). Improving the oxidative stability of pork by antioxidant type phytonutrients, Biointerface Research in Applied Chemistry, 10(3), 5624-5633. von Buchholz, J. S., Ruhnau, D., Hess, C., Aschenbach, J. R., Hess, M. & Awad, W. A. (2022). Paracellular intestinal permeability of chickens induced by DON and/or C. jejuni is associated with alterations in tight junction mRNA expression. Microb Pathog., 168, 105509. https://doi.org/10.1016/j.micpath.2022.105509. Wang, D., Xiao, H., Lyu, X., Chen, H. & Wei, F. (2023a). Lipid oxidation in food science and nutritional health: A comprehensive review, Oil Crop Science, 8(1), 35-44. ISSN 2096-2428, https://doi.org/10.1016/j.ocsci.2023.02.002. Wang, M., Huang, Q., Liu, M., Zhao, T., Song, X., Chen, Q., Yang, Y., Nan, Y., Liu, Z. & Zhang, Y. (2023b). Precisely Inhibiting Excessive Intestinal Epithelial Cell Apoptosis to Efficiently Treat Inflammatory Bowel Disease with Oral Pifithrin-α Embedded Nanomedicine (OPEN). Adv. Mater., 35, e2309370. Wang, M., Mao, Y., Wang, B., Wang, S., Lu, H., Ying, L. & Li, Y. (2020) Quercetin Improving Lipid Metabolism by Regulating Lipid Metabolism Pathway of Ileum Mucosa in Broilers. Oxid Med Cell Longev., 18, 8686248. https://doi.org/10.1155/2020/8686248. Wang, M., Xiao, F. L., Mao, Y. J., Ying, L. L., Zhou, B. & Li, Y. (2019). Quercetin decreases the triglyceride content through the PPAR signalling pathway in primary hepatocytes of broiler chickens. Biotechnology & Biotechnological Equipment, 33(1), 1000–1010. https://doi.org/10.1080/13102818.2019.1635528. Wang, M., Han, H., Wan, F., Zhong, R., Do, Y. J., Oh, S.-I., Lu, X., Liu, L., Yi, B. & Zhang, H. (2022) Dihydroquercetin Supplementation Improved Hepatic Lipid Dysmetabolism Mediated by Gut Microbiota in High-Fat Diet (HFD)-Fed Mice. Nutrients, 14(24), 5214. https://doi.org/10.3390/nu14245214. Weidmann, A. E. (2012). Dihydroquercetin: More than just an impurity? Eur J Pharmacol., 684(1-3), 19-26. Whiting, I. M., Pirgozliev, V., Kljak, K., Orczewska-Dudek, S., Mansbridge, S. C., Rose, S. P. & Atanasov, A. G. (2022). Feeding dihydroquercetin in wheat-based diets to laying hens: impact on egg production and quality of fresh and stored eggs. British Poultry Science, 63(6), 735–741. https://doi.org/10.1080/00071668.2022.2090229. Xu, X., Yang, C., Chang, J., Wang, P., Yin, Q., Liu, C., Gao, T., Dang, X. & Lu, F. (2020) Dietary Supplementation with Compound Probiotics and Berberine Alters Piglet Production Performance and Fecal Microbiota. Animals 10, 511. https://doi.org/10.3390/ani10030511. Yahfoufi, N., Alsadi, N., Jambi, M. & Matar C. (2018). The Immunomodulatory and Anti-Inflammatory Role of Polyphenols. Nutrients, 10(11), 1618. https://doi.org/10.3390/nu10111618. Yang, C. L., Lin, Y. S., Liu, K. F., Peng, W. H. & Hsu. C. M. (2019). Hepatoprotective mechanisms of taxifolin on carbon tetrachloride-induced acute liver injury in mice. Nutrients, 11, 2655. Zhai, X., Lenon, G. B., Xue, C. C. & Li, C. G. (2016). Euonymus alatus: A Review on Its Phytochemistry and Antidiabetic Activity. Evid Based Complement Alternat Med., 9425714. https://doi.org/10.1155/2016/9425714. Zhu, M., Fang, Y., Cheng, Y., Xu, E., Zhang, Y. & Zhai, Z.(2024). The Alleviating Effect of Taxifolin on Deoxynivalenol-Induced Damage in Porcine Intestinal Epithelial Cells. Vet. Sci., 11, 156. Zou, H., Ye, H., Kamara,j R., Zhang, T., Zhang, J. & Pavek, P. (2021) A review on pharmacological activities and synergistic effect of quercetin with small molecule agents. Phytomedicine, 92, 153736. https://doi.org/10.1016/j.phymed.2021.153736. Zou, Y., Wei, H. K., Xiang, Q.-H., Wang, J., Zhou, Y.-F. & Peng, J. (2016a). Protective effect of quercetin on pig intestinal integrity after transport stress is associated with regulation oxidative status and inflammation. Journal of Veterinary Medical Science, 78(9), 1487-1494. https://doi.org/10.1292/jvms.16-0090. Zou, Y., Xiang, Q., Wang, J., Wei, H. & Peng, J. (2016b). Effects of oregano essential oil or quercetin supplementation on body weight loss, carcass characteristics, meat quality and antioxidant status in finishing pigs under transport stress. Livestock Science, 192, 33-38. https://doi.org/10.1016/J.LIVSCI.2016.08.005 |
|
| Date published: 2024-08-27
Download full text