Influence of carbon dioxide emission from poultry on some trace elements content in greenhouse planted lettuce (Lactuca sativa)
Ivan Yanchev
Abstract: The aim of the present study was to evaluate the effect of increased CO2 levels as a compound of mixed emissions from a poultry housing (transported by an air duct into a greenhouse), on lettuce’ trace elements content. The experiment was carried out at the experimental poultry farm of the Institute of Animal Science - Kostinbrod in May and June, 2019, for 40 days. During the experiment the following parameters were controlled and measured both in control and experimental greenhouses (lettuce groups): average level of CO2, indoor air temperature and relative humidity, - three times a week during irrigation at noon by handset IAQ Monitor SM-2100; Average level of ammonia (NH3) - three times a week during irrigation at noon by handset Aeroqual Series 200 Monitor. At the end of the experiment, soil and plants samples from both groups were taken and tested for the content of 15 microelements - Vanadium (V), hromium (Cr), Manganese (Mn), Cobalt (Co), Nickel (Ni), Copper (Cu) , Zinc (Zn), Arsenic (As), Selenium (Se), Molybdenum (Mo), Silver (Ag), Cadmium (Cd), Tin (Sn), Mercury (Hg) and Lead (Pb) by mass pectrometry with inductively coupled plasma (ICP-MS). The obtained results show that the triple increase in the cobalt concentration in the experimental group (P <0.001) can definitely be associated with the increased photosynthesis and the expected Vit. B12 levels. Of interest are also the levels of the elements vanadium and chromium – respectively, 3.3 and 10.7 times higher in the experimental group compared to the control group (P <0.001). The content of copper and selenium in the plants corresponds to their high level in the soil, but in copper the accumulation in the experimental group is suppressed (P <0.01), while for selenium we can assume that CO2 stimulates to some extent its accumulation (P <0.05).
Keywords: Carbon dioxide; lettuce; poultry; trace elements
Citation: Yanchev, I. (2024). Influence of carbon dioxide emission from poultry on some trace elements content in greenhouse planted lettuce (Lactuca sativa). Bulgarian Journal of Animal Husbandry, 61(6), 35-43 (Bg).
References: (click to open/close) | Andresen, E., Peiter, E. & Küpper, H. (2018). Trace metal metabolism in plants. Journal of Experimental Botany, 69(5), 909–954. Angelow, L. (1987). Selenic deficiency and the selenium status of goats, doctoral thesis, FSU-Jena (De). Anke, M., Groppel, B., Krause, U., Angelow, L., Arnhold, W., Masaoka, T., Barhoum, S. & Zervas, G. (1988). Normal manganese, zinc, copper, iron, iodine, molybdenum, nickel, arsenic, lithium and cadmium supply dependent on the geological origin of the site and its effects on the status of these elements in wild and domestic ruminants. In: Trace elements in man and animals, 6. Hurley, L.S. (ed.). New York (USA). Plenum Press, 663-665. Anke, M., Hoffmann, G., Gruen, M., Groppel, B. & Riedel, E. (1982). Absorption, distribution and excretion of arsenic-76 in hens and ruminants. In: The use of isotopes to detect moderate mineral imbalances in farm animals. Joint FAO/IAEA Div. of Isotope and Radiation Applications of Atomic Energy for Food and Agricultural Development, Vienna (Austria), 135-146. Anke, M., Müller, R., Hoppe, C. & Schäfer, U. (2004). Zinc in the food chain – its biological importance. Part One: Zinc in the flora. In: M. Anke, et al. (eds.). Mengen- und Spurenelemente 22 Workshop, 2, 1800-1805. Audu, A. & Lawal, A. (2006). Variation in Metal Contents of Plants in Vegetable Garden Sites in Kano Metropolis. J. Appl. Sci. Environ. Mgt., 10(2), 105 – 109. Bombach, G., Pierra, A. & Klemmq, W. (1994). Arsenic in contaminated soil and river sediments. In: Fresenius's Journal of Analytical Chemistry, 350(1-2), 49-53. Borowska, K. & Koper, J. (2000). Total selenium and total available phosphorus content in soils and Lucerne from from Kujawy Upland. In: M. Anke, et al. (eds.). Mengen- und Spurenelemente 20 Arbeitstagung, 173-179. Chaudhari, B. H., Parmar, J. K., Mali, R. H. & Bumbadiya, N. H. (2017). Effect of Co level and FYM on growth and yield of fodder maize. International Journal of Chemical Studies, 5(1), 327-329. Hattemer-Frey, H. A., Lau, V. & Krieger, G. R. (1994). A preliminary evaluation of the soil, plant and chemical parameters that influence root uptake of some metals. In: Trace substances, environment and health. Cothern, C.R. (ed.). Northwood (United Kingdom). Science Reviews Ltd., 53-61. Henry, P. R. (1995). Manganese bioavailability. In: C. B. Ammerman, D. H. Baker, A. J. Lewis (eds.), Bioavailability of Nutrients for Animals, Academic Press, NY, 239-256. Henry, P. R., Littell, R. C. & Ammerman, C. B. (1997). Bioavailability of cobalt sources for ruminants. 1. Effects of time and dietary cobalt concentration on tissue cobalt concentration. Nutrition Research, 17(6), 947-955. Kleiber, T. (2014). Effect of Manganese Nutrition on Content of Nutrient and Yield of Lettuce (Lactuca Sativa L.) in Hydroponic. Ecological Chemistry and Engineering S., 21(3), 529-537. Knížatová, M., Brouček, J. & Mihina Š. (2010). Seasonal differences in levels of carbon dioxide and ammonia in broiler housing. Slovak Journal of Animal Science, 43, 105−112. Kosiorek, M. & Wyszkowski, M. (2019). Effect of cobalt on environment and living organisms - a review. Applied Ecology and Environmental Research, 17(5), 11419-11449. Kubicka, K., Samecka-Cymerman, A., Kolon, K., Kosiba, P. & Kempers, A. (2015). Chromium and nickel in Pteridium aquilinum from environments with various levels of these metals. Environ. Sci. Pollut. Res., 22, 527–534. Makino, A. & Mae, T. (1999). Photosynthesis and Plant Growth at Elevated Levels of CO2. Plant Cell Physiol., 40(10), 999-1006. Mihina, Š., Sauter, M., Palkovičová, Z., Karandušovská, I. & Brouček, J. (2012). Concentration of harmful gases in poultry and pig houses. Animal Science Papers and Reports, 30, 395−406. Neadoe, A., Richter, D., Anke, S., Schmidt, P., Machelet, B. & Anke, M. (1996). The efect of the tar exposyre of a living area on the manganese transfer from soil to plants and Human. Prosedings of 2nd Inter. Symp. on “ Metal Elements in Environment, Medicine and Biology “, Romania, 309-314. Neunhäuserer, C., Berreck M. & Insam, H. (2001). Remediation of Soils Contaminated with Molybdenum using Soil Amendments and Phytoremediation. Water, Air, and Soil Pollution, 128(1-2), 85-96. Pinto, E., Almeida, A., Aguiar, A. & Ferreira, I. (2014). Changes in macrominerals, trace elements and pigments content during lettuce (Lactuca sativa L.) growth: Influence of soil composition. Food Chemistry, 152, 603-611. Prior, S., Runion, G., Marble, S., Rogers, H., Gilliam, C. & Torbert, H. (2011). A Review of Elevated Atmospheric CO2 Effects on Plant Growth and Water Relations: Implications for Horticulture. Hortscience, 46(2), 158-162. Ringelband, U. & Hehl, O. (2000). Kinetics of vanadium bioaccumulation by the brackish water hydroid Cordylophora caspia (Pallas). Bulletin of Environmental Contamination and Toxicology, 65, 486-493. Samantaray, S., Rout, G. & Das, P. (1998). Role of chromium on plant growth and metabolism. Acta Physiologiae Plantarum, 20, 201-212. Siegert, E., Anke, M., Szentmihalyi, S., Regius, A. & Lokay, D. (1986). The zinc content of the bovine hide depends on the geological origin of the site. In: M. Anke, W. Baumann, H. Bräunlich, Chr. Brückner, B. Groppel (eds). 5. Spurenelementsymposium (Trace Elements), VEB Kongreß- und Werbedruck, Oberlungwitz, DDR, 2, 487-493 (De). Szentmihalyi, S., Anke, M., Regius, A., Ravel, J., Lokay, D. & Grun, M. (1986). The copper supply of the flora in middle Europa. In: M. Anke, W. Baumann, H. Bräunlich, Chr. Brückner, B. Groppel (eds). 5. Spurenelementsymposium (Trace Elements), VEB Kongreß- und Werbedruck, Oberlungwitz, DDR, 2, 377-386. Teklić, T., Engler, M., Cesar, V., Lepeduš, H., Parađiković, N., Lončarić, Z., Štolfa, I., Marotti, T. & Mikac, N. (2008). Influence of excess copper on lettuce (Lactuca sativa L.) grown in soil and nutrient solution. Journal of Food, Agriculture and Environment, 6(3-4), 439-444. Vachirapatama, N., Jirakiattikul, Y., Dicinoski, G., Townsend, A. & Haddad, P. (2011). Effect of vanadium on plant growth and its accumulation in plant tissues. Songklanakarin J. Sci. Technol., 33(3), 255-261. Vatansever, R., Ozyigit, I. I. & Filiz, E. (2017). Essential and Beneficial Trace Elements in Plants, and Their Transport in Roots: a Review. Appl. Biochem. Biotechnol., 181, 464–482. Vučemilo, M., Matković, K., Vinković, B., Jaksić, S., Granić, K. & Mas, N. (2007). The effect of animal age on air pollutant concentration in a broiler house. Czech Journal of Animal Science, 52, 170-174. Wagner, H., Petrova I. & Angelow, L. (2004). Distribution of selenium along the food chain of sheep reared in mountain pasture areas. In: M. Anke, et al. (eds.). Mengen- und Spurenelemente 22 Workshop, 1, 424-429. Wang, J. F. & Liu, Z. (1999). Effect of vanadium on the growth of soybean seedlings. Plant and Soil., 216(1-2), 47-51. Welch, R. (2008). The biological significance of nickel. Journal of Plant Nutrition, 3(1-4), 345-356. Yruela, I. (2005). Copper in plants. Brazilian Journal of Plant Physiology, 17(1), 145-156. ZhenZhu, F., XiaoYu, D., HeChen, Z., LiMin, W., HuiJuan, W., YanMin, L., Hui, J. & Jie, G. (2018). Effects of trace elements on growth and photosynthetic physiology of Phalaenopsis. Journal of Henan Agricultural Sciences,47(2), 98-100. |
|
| Date published: 2024-12-16
Download full text