Прецизно животновъдство: същност и приложение при едри и дребни преживни. Обзор
Йовка Попова, Стайка Лалева, Магдалена Облакова, Николай Иванов, Иван Славов, Недка Димова
Abstract: През новия програмен период 2021-2027 година като стратегическа цел за развитието на европейското земеделие е определена „стимулирането и споделянето на знания, иновации, цифровизация и насърчаване на използването им в по-голяма степен“. Нарастващият брой животни във фермите, изискванията за хуманно отношение и опазване на околната среда, както и прилагането на производствени системи с ограничено използване на ресурси изискват нови решения, които могат да бъдат намерени в цифровите технологии, използвани в цялата система за животновъдство.
Прецизното животновъдство включва използването на цифрови технологии. То има за цел да подобри производството и възпроизводството, хуманното отношение към животните и улесняване целенасочено използване на ресурсите за намаляване на въздействието върху околната среда и здравето на хората чрез прецизното контролиране на процесите.
Внедряването на PLF зависи: социално-демографските фактори, размера на фермата, производствената система, специализацията на стопанството, вида на отглежданите животни, технологията на отглеждане, възрастта на фермера, държавата и региона и др.
Keywords: говедовъдство; дигитализация; прецизно животновъдство; овцевъдство
Citation: Popova, Yo., Laleva, S., Oblakova, M., Ivanov, N., Slavov, I. & Dimova, N. (2024). Precision livestock farming: essence and application in large and small ruminants. Review. Bulgarian Journal of Animal Husbandry, 61(2), 54-63 (Bg).
References: (click to open/close) | Abeni, F., Petrera, F. & Galli, A. (2019). A survey of Italian dairy farmers' propensity for precision livestock farming tools. Animals,9, 202. Al-Thani, N., Albuainain, A., Alnaimi, F. & Zorba, N. (2020). Drones for sheep livestock monitoring. In Proceedings of the 2020 IEEE 20th Mediterranean Electrotechnical Conference (MELECON), Palermo, Italy, 16–18 June 2020, 672–676. Andrew, W., Greatwood, C. & Burghardt, T. (2022). Fusing animal biometrics with autonomous robotics: Drone-based search and individual id of friesian cattle. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision Workshops, Snowmass Village, CO, USA, 2–5 March 2022, 38–43. Aungier, S. P. M., Roche, J. F., Sheehy, M. & Crowe, M. A. (2012). Effects of management and health on the use of activity monitoring for estrus detection in dairy cows. J. Dairy Sci., 95, 2452–2466. Banhazi, T. M., Lehr, H., Black, J., Crabtree, H., Schofield, P., Tscharke, M. & Berckmans, D. (2012). Precision livestock farming: an international review of scientific and commercial aspects. International Journal of Agricultural and Biological Engineering, 5, 1–9. Barkema, H. W., von Keyserlingk, M., Kastelic, J., Lam, T., Luby, C., Roy, J-P., LeBlanc, S., Keefe, G. & Kelton, D. (2015). Invited review: changes in the dairy industry affecting dairy cattle health and welfare. Journal of Dairy Science, 98, 7426–7445. Barnes, A. P., Soto, I., Eory, V., Beck, B., Balafoutis, A., Sánchez, B., Vangeyte, J., Fountas, S., van der Wal, T. & Gomez-Barbero, M. (2019). Exploring the adoption of precisionagricultural technologies: a cross regional study of EU farmers. Land Use Policy, 80, 163–174. Benni, S., Pastell, M., Bonora, F., Tassinari, P. & Torreggiani, D. (2020). A generalised additive model to characterise dairy cows’ responses to heat stress. Animal, 14, 418–424. Berckmans, D. (2006). Automatic on-line monitoring of animals by precision livestock farming. Livestock Production and Society, 287, 27–30. Berckmans, D. (2014). Precision livestock farming technologies for welfare management in intensive livestock systems. Sci. Tech. Rev. Office Int. des Epizooties. Berckmans, D. (2017). General introduction to precision livestock farming. Animal Frontiers 7, 6–11. Betteridge, K., Hoogendoorn, C., Costall, D., Carter, M. & Griffiths, W. (2010). Sensors for detecting and logging spatial distribution of urine patches of grazing female sheep and cattle. Comput. Electron. Agric., 73, 66–73. Bonora, F., Pastell, M., Benni, S., Tassinari, P. & Torreggiani, D. (2018). ICT Monitoring and Mathematical Modelling of Dairy Cows Performances in Hot Climate Conditions: A study Case in Po Valley (Italy). Available online: https://cigrjournal.org/ index.php/Ejounral/article/view/4679 (accessed on 3 May 2022). Bonora, F., Benni, S., Barbaresi, A., Tassinari, P. & Torreggiani, D. (2018). A cluster-graph model for herd characterisation in dairy farms equipped with an automatic milking system. Biosyst. Eng., 167, 1–7. Borchers, M. R. & Bewley, J. M. (2015). An assessment of producer precision dairyfarming technology use, prepurchase considerations, and usefulness. Journal of Dairy Science, 98, 4198–4205. Bovo, M., Agrusti, M., Benni, S., Torreggiani, D. & Tassinari, P. (2021). Random forest modelling of milk yield of dairy cows under heat stress conditions. Animals, 11, 1305. Cadero, A., Aubry, A., Dourmad, J. Y., Salaun, Y. & Garcia-Launay, F. (2018). Towards a decision support tool with an individual-based model of a pig fattening unit. Computers and Electronics in Agriculture, 147, 44-50. Carné, S., Caja, G., Ghirardi, J. J. & Salama, A. A. K. (2009). Long-term performance of visual and electronic identification devices in dairy goats. J. Dairy Sci., 92, 1500–1511. Casas, R., Hermosa, A., Marco, Á., Blanco, T. & Zarazaga-Soria, F. J. (2021). Real-Time Extensive Livestock Monitoring Using LPWAN Smart Wearable and Infrastructure. Appl. Sci., 11, 1240. Costa, A., Mentasti, T., Guarino, M., Leroy, T. & Berckmans, D. (2007). Real time monitoring of pig activity: Practical difficulties in pigs’ behaviour labelling. In Proceedings of the Precision Livestock Farming 2007—Papers Presented at the 3rd European Conference on Precision Livestock Farming; Wageningen Academic Publishers: Wageningen, The Netherlands, 2007. De Diego, A. C. P., Sánchez-Cordón, P. J., Pedrera, M., Martínez-López, B., Gómez-Villamandos, J. C. & Sánchez-Vizcaíno, J. M. (2013). The use of infrared thermography as a non-invasive method for fever detection in sheep infected with bluetongue virus. Vet. J., 198, 182–186. Drewry, J. L., Shutske, J. M., Trechter, D., Luck, B. D. & Pitman, L. (2019). Assessment of digital technology adoption and access barriers among crop, dairy and livestock producers in Wisconsin. Computers and Electronics in Agriculture, 165, 104960. Dominiak, K. N. & Kristensen, A. R. (2017). Prioritizing alarms from sensor-based detection models in livestock production—A review on model performance and alarm reducing methods. Comput. Electron. Agric., 133, 46–67. Edwards, J. P., Rue, B. T. D. & Jago, J. G. (2015). Evaluating rates of technology adoption and milking practices on New Zealand dairy farms. Animal Production Science, 55, 702–709. Edwards, J. P., Rue, B. T. D. & Jago, J. G. (2015). Evaluating rates of technology adoption and milking practices on New Zealand dairy farms. Animal Production Science, 55, 702–709. European Commission, 2018. FSO (Federal Statistical Office) 2019b. Landwirtschaft und Ernährung: Taschenstatistik (Agriculture and food: pocket statistics). Retrieved on 07 January 2019 from https://www.bfs.admin.ch/bfs/de/home/aktuell/neueveroeffentlichungen.gnpdetail.2019-0344.htm. Gargiulo, J. I., Eastwood, C. R., Garcia, S. C. & Lyons, N. A. (2018). Dairy farmers with larger herd sizes adopt more precision dairy technologies. Journal of Dairy Science, 101, 5466–5473. Ghang, X., Kang, X., Feng, N. & Liu, G. (2020). Automatic recognition of dairy cow mastitis from thermal images by a deep learning detector. Comput. Electron. Agric., 178, 105754. Gebbers, R. & Adamchuk, V. (2010). Precision Agriculture and Food Security. Science, 327(5967), 828-831. Groher, T., Heitkämper, K., Walter, A., Liebisch, F. & Umstätter, С. (2020a). Status quo of adoption of precision agriculture enabling technologies in Swiss plant production. Precision Agriculture, 1–24. doi: 10.1007/s11119-020-09723-5. Groher, T., Heitkämper, K. & Umstätter, С. (2020b). Digital technology adoption in livestock production with a special focus on ruminant farming. Animal, 14(11), 2404-2413. Halachmi, I., Guarino, M., Bewley, J. & Pastell, M. (2019). Smart Animal Agriculture: Application of Real-Time Sensors to Improve Animal Well-Being and Production. Annu. Rev. Anim. Biosci., 7, 403–425. John, A. J., Clark, C. E. F., Freeman, M. J., Kerrisk, K. L., Halachmi, I. & Garcia, S. C. (2016). Review: Milking robot utilization, a successful precision livestock farming evolution. Animal, 10, 1484–1492. Kaler, J. (2018). Drivers for precision livestock technology adoption: a study of factors associated with adoption of electronic identification technology by commercial sheep farmers in England and Wales. PLoS ONE, 13, e0190489. Konrad, M. T., Nielsen, H. Ø., Pedersen, A. B. & Elofsson, K. (2019). Drivers of farmers’ investments in nutrient abatement technologies in five Baltic Sea countries. Ecological Economics, 159, 91–100. Krieger, S., Sattlecker, G., Kickinger, F., Auer, W., Drillich, M. & Iwersen, M. (2018). Prediction of calving in dairy cows using a tail-mounted tri-axial accelerometer: A pilot study. Biosyst. Eng., 173, 79–84. LeRoy, C. N. S., Walton, J. S., LeBlanc, S. J. (2018). Estrous detection intensity and accuracy and optimal timing of insemination with automated activity monitors for dairy cows. J. Dairy Sci., 101, 1638–1647. Llaria, A., Terrasson, G., Arregui, H. & Hacala, A. (2015). Geolocation and monitoring platform for extensive farming in mountain pastures. In Proceedings of the IEEE International Conference on Industrial Technology, Seville, Spain, 17–19 March 2015. Lima, E., Hopkins, T., Gurney, E., Shortall, O., Lovatt, F., Davies, P., Williamson, G. & Kaler, J. (2018). Drivers for precision livestock technology adoption: a study of factors associated with adoption of electronic identification technology by commercial sheep farmers in England and Wales. PLoS ONE, 13, e0190489. Mansbridge, N., Mitsch, J., Bollard, N., Ellis, K., Miguel-Pacheco, G.G., Dottorini, T. & Kaler, J. (2018). Feature selection and comparison of machine learning algorithms in classification of grazing and rumination behaviour in sheep. Sensors, 18, 3532. Meunier, B., Pradel, P., Sloth, K. H., Cirié, C., Delval, E., Mialon, M. M. & Veissier, I. (2018). Image analysis to refine measurements of dairy cow behaviour from a real-time location system. Biosyst. Eng., 173, 32–44. Morgan-Davies, A., Waterhouse, I., Riddell, P., Mayfield, S., Ringrose, A. & Stott. (2015). SMART Farming Opportunities (Report for SRUC SFC KTE Funding. August 2015) SRUC, Edinburgh). Morgan-Davies, C., Wilson, R. & Waterhouse, T. (2017). Impacts of farmers' management styles on income and labour under alternative extensive land use scenarios. Agricultural Systems, 155, 168-178. Morgan-Davies, C., Lambe, N., Wishart, H., Waterhouse, T., Kenyon, F., McBean D. & McCracken, D. (2018). Impacts of using a precision livestock system targeted approach in mountain sheep flocks. Livestock Science, 208, 67-76. Morrone, S. C., Dimauro, F., Gambella, M. & Cappai, G. (2022). Industry 4.0 and Precision Livestock Farming (PLF): An up to Date Overview across Animal Productions. Sensors 2022, 22, 4319. Mun, L. N., Kin, S., Hall, D. M. & Cole, P. H. (2005). A small passive UHF RFID tag for livestock identification. In Proceedings of the MAPE2005: IEEE 2005 International Symposium on Microwave, Antenna, Propagation and EMC Technologies for Wireless Communications, Beijing, China, 8–12 August 2005. Niloofar, P., Francis, D. P., Lazarova-Molnar, S., Vulpe, A., Vochin, M.-K., Suciu, G., Balanescu, M., Anestis, Va., Bartzanas, T. (2021). Data-driven decision support in livestock farming for improved animal health, welfare and greenhouse gas emissions: Overview and challenges. Computers and Electronics in Agriculture, 190, 106406. Odintsov, V. M., Levit, H., Chincarini, M., Fusaro, I., Giammarco, M. & Vignola, G. (2021). Precision livestock farming, automats and new technologies: possible applications in extensive dairy sheep farming. Animal, 15(3), 100143. Ordolff, D. (2001). Introduction of electronics into milking technology. Computersa and Electronics in Agriculture, 30, 125–149. Palczynski, L. (2016). Third annual report for researchers on research priorities on the use of sensor technologies to improve productivity and sustainability on dairy farms. Retrieved on 13 May 2019 from https://4d4f.eu/content/reportresearchers. Pathak, H. S., Brown, P. & Best, T. (2019). A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agriculture, 20, 1292–1316. Paustian, M. & Theuvsen, L. (2017). Adoption of precision agriculture technologies by German crop farmers. Precision Agriculture, 18, 701–716. Pierpaoli, E., Carli, G., Pignatti, E. & Canavari, M. (2013). Drivers of precision agriculture technologies adoption: a literature review. Procedia Technology 8, 61–69. Pinna, W., Sedda, P., Moniello, G. & Ribó, O. (2006). Electronic identification of Sarda goats under extensive conditions in the island of Sardinia. Small Rumin. Res., 66, 286–290. Reichardt, M. & Jürgens, C. (2009). Adoption and future perspective of precision farming in Germany: results of several surveys among different agricultural target groups. Precision Agriculture, 10, 73–94. Ren, K., Karlsson, J., Liuska, M., Hartikainen, M., Hansen, I. & Jørgensen, G. H. M. (2020). A sensor-fusion-system for tracking sheep location and behaviour. Int. J. Distrib. Sens. Netw., 16, 1–10. Schrijver, R., Poppe, K. & Daheim, C. (2016). Precision agriculture and the future of farming in Europe: scientific foresight study. European Parliament Research Service, Brussels, Belgium. Stachowicz, J. & Umstätter, C. (2020). Overview of commercially available digital systems in livestock farming. Agroscope Transfer, 294, 1–28 (De). Steensels, M., Bahr, C., Berckmans, D., Halachmi, I., Antler, A. & Maltz, E. (2012). Lying patterns of high producing healthy dairy cows after calving in commercial herds as affected by age, environmental conditions and production. Appl. Anim. Behav. Sci., 136, 88–95. Steensels, M., Antler, A., Bahr, C., Berckmans, D., Maltz, E. & Halachmi, I. (2016). A decision-tree model to detect post-calving diseases based on rumination, activity, milk yield, BW and voluntary visits to the milking robot. Animal, 10, 1493–1500. Steensels, M., Maltz, E., Bahr, C., Berckmans, D., Antler, A. & Halachmi, I. (2017). Towards practical application of sensors for monitoring animal health: The effect of post-calving health problems on rumination duration, activity and milk yield. J. Dairy Res., 84, 132–138. Stubsjøen, S. M., Flø, A. S., Moe, R. O., Janczak, A. M., Skjerve, E., Valle, P. S., Zanella, A. J. (2009). Exploring non-invasive methods to assess pain in sheep. Physiol. Behav., 98, 640–648. Sutherland, M. A., Worth, G. M., Dowling, S. K., Lowe, G. L., Cave, V. M. & Stewart, M. (2020). Evaluation of infrared thermography as a non-invasive method of measuring the autonomic nervous response in sheep. PLoS ONE, 15, e0233558. Tamirat, T. W., Pedersen, S. M. & Lind, K. M. (2018). Farm and operator characteristics affecting adoption of precision agriculture in Denmark and Germany. Acta Agriculturae Scandinavica, Section B – Soil & Plant Science, 68, 349–357. Taneja, M., Byabazaire, J., Jalodia, N., Davy, A., Olariu, C. & Malone, P. (2020a). Machine learning based fog computing assisted data-driven approach for early lameness detection in dairy cattle. Comput. Electron. Agric., 171, 105286. Taneja, M., Jalodia, N., Malone, P., Byabazaire, J., Davy, A. & Olariu, C. (2020b). Connected Cows: Utilizing Fog and Cloud Analytics toward Data-Driven Decisions for Smart Dairy Farming. IEEE Internet Things Mag., 2, 32–37. Terrasson, G., Llaria, A., Marra, A. & Voaden, S. (2016). Accelerometer based solution for precision livestock farming: Geolocation enhancement and animal activity identification. IOP Conf. Ser. Mater. Sci. Eng, 38, 012004. Tey, Y. S. & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: a review for policy implications. Precision Agriculture 13, 713–730. Xu, B., Wang, W., Falzon, G., Kwan, P., Guo, L., Sun, Z. & Li, C. (2020). Livestock classification and counting in quadcopter aerial images using Mask R-CNN. Int. J. Remote Sens., 41, 8121–8142. Valenza, A., Giordano, J. O., Lopes, G., Vincenti, L., Amundson, M. C. & Fricke, P. M. (2012). Assessment of an accelerometer system for detection of estrus and treatment with gonadotropin-releasing hormone at the time of insemination in lactating dairy cows. J. Dairy Sci., 95, 7115–7127. Van Hertem, T., Bahr, C., Tello, A. S., Viazzi, S., Steensels, M., Romanini, C. E. B., Lokhorst, C., Maltz, E., Halachmi, I. & Berckmans, D. (2016). Lameness detection in dairy cattle: Single predictor v. multivariate analysis of image-based posture processing and behaviour and performance sensing. Animal, 10, 1525–1532. Van Hertem, T., Rooijakkers, L., Berckmans, D., Fernández, A. P., Norton, T. & Vranken, E. (2017). Appropriate data visualisation is key to precision livestock farming acceptance. Computers and Electronics in Agriculture, 138, 1–10. Walton, E., Casey, C., Mitsch, J., Vázquez-Diosdado, J. A., Yan, J., Dottorini, T., Ellis K. A., Winterlich, A. & Kaler, J. (2018). Evaluation of sampling frequency, window size and sensor position for classification of sheep behaviour. R. Soc. Open Sci.;5(2), 171442. Wathes, C. M., Kristensen, H. H., Aerts, J-M. & Berckmans, D. (2008). Is precision livestock farming an engineer’s daydream or nightmare, an animal’s friend or foe, and a farmer’s panacea or pitfall? Computers and Electronics in Agriculture, 64, 2–10. Warner, D., Vasseur, E., Lefebvre, D. M. & Lacroix, R. (2020). A machine learning based decision aid for lameness in dairy herds using farm-based records. Comput. Electron. Agric., 169, 105193.
|
|
| Date published: 2024-05-14
Download full text