Molecular-genetic approaches in poultry breeding
Radostina S.-Grigorova
Резюме: Poultry farming is an animal breeding industry addressing the need for eggs and meat with prominent delicacy qualities. Modern, highly productive breeds need to be created and maintained in order to let this industry meet the consumers’ demands. With the following literature overview we aimed to examine the studies evaluating the candidate genes that are related to birds’ productivity. Molecular-genetic approaches such as sequencing, Genome Wide Association Studies, Microsatellite markers, Real time PCR, PCR-RFLP enable the discovery of the genetic mechanisms that regulate the processes in organisms, thus affecting the desired productive qualities of farm animals. Meat and egg productivity directly depend on a number of genetic and non-genetic factors. The genetic factors include a wide variety of genes that control the expression of proteins involved in various biochemical processes.
Ключови думи: DNA analysis; farms productivity; Marker-assisted selection; poultry
Цитиране: Stoykova-Grigorova, R. (2024). Molecular-genetic approaches in poultry breeding. Bulgarian Journal of Animal Husbandry, 61(4), 40-47 (Bg).
Литература: (click to open/close) | Abbasi, H. A. & Kazemi, M. (2011). Detection of polymorphism of the insulin-like growth factor-I (IGF-I) gene in Mazandaran native chicken using PCR-RFLP method. African Journal of Biotechnology, 10(61), 13351-13354. Ahiagbe, K. M. J., Adenyo, C., Inoue-Murayama, M., Amuzu-Aweh, E. N., Bonney, P. & Kayang,B. B. (2023). Single Nucleotide Polymorphisms in Insulin-like Growth Factor 2 (IGF2) gene and their associations with body weight and growth rate traits in indigenous guinea fowls (Numida meleagris) of northern Ghana. Animal Gene., 27, 200139. Al-Hassani, A. S., Al-Hassani, D. H. & Abdul-Hassan, I. A. (2023). PCR-RFLP Analysis of Insulin-Like Growth Factor 2 Gene Polymorphisms in Two Commercial Broiler Chicken Strains (Cobb 500 and Hubbard F-15) and Their Associations with Performance Traits. Archives of Razi Institute, 78(3), 1153-1157. Anh, N. T. L., Kunhareang, S. & Duangjinda, M. (2015). Association of chicken growth hormones and insulin-like growth factor gene polymorphisms with growth performance and carcass traits in thai broilers. Asian Australas. J. Anim., 28(12), 1686-1695. Babayi, M. S., Seyedabadi, H., Gorbani, A. & Zarghami, N. (2014). IGF-I Gene Polymorphism and its Associations with Some Growth traits in West-Azerbaijan Native chicken using PCR-RFLP Techniques. Bull. Env. Pharmacol. Life Sci., 3(6), 29-32. Bal, G. R., Vishesh, K. S., Usha, R. & Mahendra, C. K. (2019). PCR-RFLP Study of Candidate Genes for Egg Production in Layer Chicken. Arch Anim Poult Sci., 1(3), 555-563. Darling, D. C. & Brickell, P. M. (1996). Nucleotide sequence and genomic structure of the chicken insulin-like growth factorII (IGF-II) coding region. Gen Comp Endocrinol., 102(3), 283-287. Deeb, N. & Lamont, S. J. (2002). Genetic Architecture of Growth and Body Composition in Unique Chicken Populations. J. Heredity, 93(2), 107-118. Demir, E., Karslı, T., Fidan, H. G., Argun, Karslı, B., Aslan , M., Aktan, S., Kamanlı, S., Karabağ, K., Şahin, Semerci, E. & Balcıoğlu, M. S. (2020). Polymorphisms in some candidate genes associated with egg yield and quality in five different white layer pure lines. Kafkas Univ Vet Fak Derg, 26(6), 735-741. Ding, Y. H., Ko, B. R., Ou, P. H., Wang, C. L., Chen, M. C., Huang, Y. P., Lee, E. C., Lin, S. T., Chen, C. F., Lin, H. W. & Cheng, W. T. K. (2008). The expression of genes related to egg production in the liver of taiwan country chickens. Asian-Aust. J. Anim. Sci., 21(1), 19 – 24. El-Shafaey, E.-S., Ateya, A., Ramadan, H., Saleh, R., Elseady, Y., Abo, E., Fadl, El. & El-Khodery, S. (2017). Single Nucleotide Polymorphisms in IL8 and TLR4 Genes as Candidates for Digital Dermatitis Resistance/Susceptibility in Holstein Cattle. Animal Biotechnology, 28(2), 131-137. El-Tahawy, W. S. & Abdel-Rahman, M. M. (2020). Molecular Breeding of Three Genes Associated with Egg Production Traits in Three Strains of Chickens. J. World Poult. Res., 10(4), 605-614. Fouda, M., Ateya, A., Araby, I. E. L. & Elzeer, A. (2021). Genetic polymorphisms and expression pattern of Igf1 gene in сommercial broiler strains. Journal of Animal & Plant Sciences, 31(6), 1542-1547. Fu, M., Wu, Y., Shen, J., Pan, A., Zhang, H., Sun, J., Liang, Z., Huang, T., Du, J. & Pi, J. (2023). Genome-Wide Association Study of Egg Production Traits in Shuanglian Chickens Using Whole Genome Sequencing. Genes, 14, 2129. Gao, J., Xu, W., Zeng, T., Tian, Y., Wu, C., Liu, S., Zhao, Y., Zhou, S., Lin, X, Cao, H. & Lu, L. (2022). Genome-Wide Association Study of Egg-Laying Traits and Egg Quality in LingKun Chickens. Front. Vet. Sci., 9, 877739. Habashy, W. S. & Adomako K. (2023). The relationship between egg production, reproductive hormones, and the GDF9 gene in three different chicken strains. Animal Gene, 27, 200147. Lei, Q., Zhang, S., Wang, J., Qi, C., Liu, J., Cao, D., Li, F., Han, H., Liu, W., Li, D., Tang, C. & Zhou, Y. (2024). Genome-wide association studies of egg production traits by whole genome sequencing of Laiwu Black chicken. Poultry Science, 103, 103705. Liu, Z., Sun, C., Yan, Y., Li, G., Shi, F., Wu, G., Liu, A. & Yang, N. (2018a). Genetic variations for egg qualityof chickens at late laying period revealed by genome-wide association study. Scientific Reports, 8, 10832. Liu, Z., Sun, C., Yan, Y., Li, G., Wu, G., Liu, A. & Yang, N. (2018). Genome-wide association analysis of age-dependent egg weights in chickens. Frontiers in genetics, 9, 128. Liu, Z., Yang, N., Yan, Y., Li, G., Liu, A., Wu, G. & Sun, C. (2019). Genome-wide association analysis of egg production performance in chickens across the whole laying period. BMC genetics, 20, 1-9. McMurtry, J. P., Francis, G. L. & Upton Z. (1997). Insulin-like growth factors in poultry. Domest Anim Endocrinol, 14(4), 199-229. Molee, A., Kuadsantia, P. & Kaewnakian, P. (2018). Gene Effects on Body Weight, Carcass Yield, and Meat Quality of Thai Indigenous Chicken. Journal of Poultry Science, 55, 94-102. Mustafa, A. A. & Ihsan, T. T. (2022). Improving eggs production and quality for layer by Stocking density and medicinal plants Iraqi. Journal of Agricultural Sciences, 53(6), 1270-1279. Nicholson, D. (1998). Research: Is it the broiler industry's partner into the new millennium World's. Poultry Science J., 54(3), 271-278. Nurcahya, H., Sinaga, E., Darwati, S. & Khaerunissa, I. (2020). Relationship between of Insuline Like growth Factor-2 Gene and Growth Traits in Crosses of Indonesian Local Chicken. Journal of Physics: Conference Series, 1665, 012015. Ogunpaimo, O. J., Ojoawo, H. T., Wheto, M. Y., Adebambo, A. O. & Adebambo, O. A. (2021). Association of insulin-like growth factor 1 (IGF1) gene polymorphism with the reproductive performance of three dual-purpose chicken breeds. Transl. Anim. Sci., 5, 1-7. Promket, D., Pengmeesri, K., Kammongkun, J. & Somchan, T. (2023). Polymorphism of the candidate genes and their association with egg production traits in Thai native chickens. Adv. Anim. Vet. Sci., 11(4), 630-636. Saxena, V. K., Sachdev, A. K., Gopal, R. & Pramod, A. B. (2009). Roles of important candidate genes on broiler meat quality. World's Poultry Science Journal, 65, 37-50. Sun, J., Tan, X., Yang, X., Bai, L., Kong, F., Zhao, G., Wen, J. & Liu, R. (2022). Identification of candidate genes for meat color of chicken by combing selection signature analyses and differentially expressed genes. Genes, 13, 307. Sun, Y., Zhao, G., Liu, R., Zheng, M., Hu, Y., Wu, D., Zhang, L., Li, P. & Wen, J. (2013). The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study. BMC Genomics, 14, 458. Tavárez, M. A. & Santos, F. S. D. L. (2016). Impact of genetics and breeding on broiler production performance: a look into the past, present, and future of the industry. Animal Frontiers, 6(4), 37–41. Elminowska-Wenda, G., Pierzchała, K. W., Bogucka, J. & Wyszyńska-Koko, J. K. (2007). A relationship between the polymorphism in the coding and 5’regions of the porcine MyoD genes and microstructure traits of longissimus lumborum muscle. Animal Science Papers and Reports, 25(4), 249-258. Wolc, A., Arango, J., Jankowski, T., Dunn, I., Settar, P., Fulton, J. E., O'Sullivan, N. P., Preisinger, R., Fernando, R. L., Garrick, D. J. & Dekkers, J. C. M. (2014). Genome-wide association study for egg production and quality in layer chickens. Journal of animal breeding and genetics, 131, 173–182. Yang, S., Ning, C., Yang, C., Li, W., Zhang, Q., Wang, D. & Tang, H. (2024). Identify Candidate Genes Associated with the Weight and Egg Quality Traits in Wenshui Green Shell-Laying Chickens by the Copy Number Variation-Based Genome-Wide Association Study. Vet. Sci., 11, 76. Yokomine, T., Kuroiwa, A., Tanaka, K., Tsudzuki, M., Matsuda, Y. & Sasaki, H. (2001). Sequence polymorphisms, allelic expression status and chromosome locations of the chicken IGF2 and MPR1 genes. Cytogenet Cell Genet., 93(1-2), 109-113. Zhang, C., Zhang, W., Luo, H., Yue, W., Gao, M. & Jia, Z. (2008). A New Single Nucleotide Polymorphism in the IGF-I Gene and Its Association with Growth Traits in the Nanjiang Huang Goat. Asian-Australasian J. Anim. Sciences, 21(8), 1073-1079. Zhou, H., Mitchell, D. A., McMurtry, J. P., Ashwell, C. M. & Lamont, S. J. (2005). Insulin-Like Growth Factor-I Gene Polymorphism Associations with Growth, Body Composition, Skeleton Integrity, and Metabolic Traits in Chickens. Poultry Science, 84, 212–219.
|
|
| Дата на публикуване: 2024-08-27
Свали пълен текст