Агроволтаичните системи (AVS) - необходимост, видове, разпространение и тенденции на развитие. Обзор
Цветан Марков, Иван Янчев, Николай Марков, Мирослав Христов
Abstract: Разгледани са ползите и тенденцията за развитие в производството на слънчева енергия в земеделието по света, в Европа и у нас. Тази индустрия, разработена през далечните 80-те години на ХХ век, е интересна с това, че цената на фотоволтаичните панели прогресивно намалява, а чрез тях направените капиталовложения се изплащат сравнително бързо, като се демонстрира същевременно екологичен, зелен ефект. Агроволтаичните системи имат съвременен дизайн и здрава колонна конструкция, които са съобразени с всички стандарти за безопасност. Прилагат се след проведени проектантски дейности. Агрофотоволтаичните системи могат да бъдат с различни размери и мощност. Препоръчително е минималната мощност да бъде 20 kW за ферма. Допълнителните приходи от слънчевите инсталации могат да осигурят предвидим и ритмичен паричен поток за фермерите. Оптималният светлинен спектър подобрява производството на енергия и улеснява разстежа на културите и сортовете, пропускайки максимално необходимата слънчева светлина. Отглеждат се предимно листни зелетчуци, картофи, ягоди, малини, овощни видове, зърнени куртури и др. Наличната растителност под тях (разнообразни тревостои) е евтин и стандартен фураж за консумиращите я тревопасни животни и птици.
Keywords: агроволтаични системи; приходи; модерно земеделие; фотоволтаици
Citation: Markov, Ts., Yanchev, I., Markov, N. & Hristov, M. (2025). Agrovoltaic systems (AVS) - need, types, distribution and development trends. Overview. Bulgarian Journal of Animal Husbandry, 62(2), 43-50 (Bg).
References: (click to open/close) | Agro Photovoltaic system on the farm. How does it work?-Agri.bg, (Bg) – https://agri.bg/, 25.02.2025 Al Mamun, M., Dargusch, P., Wadley, D., Zulkarnain, N. A. & Aziz, A. A. (2022). A review of research on agrivoltaic systems. Revew. Sustain Energy Rev, 161, Article 112351, 10.1016/j.rser.2022.112351. Amaducci, S., Colauzzi, X. & Yin, M. (2018). Agrivoltaic systems to optimise land use for electric energy production. Appl Energy, 220, 545-561. 10.1016/j.apenergy.2018.03.081. An, K., Yoon, C., Shin, S., Kim, D., Kim, S. & Cho, J. (2020). Characteristics of paddy rice under mimic APV module structure in Jeonnam. 2020 KSES Spring Annual Conference:KSES, 126-128. Barron-Gafford, G. A., Pavao Zuckerman, M. A., Minor, R. L., Sutter, L. F., Barnett-Moreno, I. & Blackett, D. T. (2019). Agrivoltaics provide mutual benefits across the food–energy–water nexus in drylands. QNat Sustain, 2, 848-855. 10.1038/s41893-019-0364-5. Chen, J., Liu, Y. & Wang L. (2019). Research on coupling coordination development for photovoltaic agriculture system in China, Sustainability 2019, 11, 1065; doi:10.3390/su1104106511 Dinesh, H. & Pearce, J. M. (2016).The potential of agrivoltaic systems. Revew. Sustain. Energy Rev., 54, 299-308. 10.1016/j.rser.2015.10.024. Elamri, Y., Cheviron, B., Lopez, J.-M., Dejean, C. & Belaud, G. (2018). Water budget and crop modelling for agrivoltaic systems. Application to irrigated lettuces,Agric Water Manag, 208, 440-453. 10.1016/j.agwat.2018.07.001. Falster, D. S. & Westoby, M. (2003). Leaf size and angle vary widely across species: What consequences for light interception? New Phytol., 158, 509-525. 10.1046/j.1469-8137.2003.00765.x. Falster, D. S. (2024). New Energy. Online: https:// www.dsnes.com. 25.02.2025 Gielen, D., Boshell, F., Saygin, D., Bazilian, M. D., Wagner, N. & Gorini, R. (2019). The role of renewable energy in the global energy transformation. Energy Strategy Rev., 24, 38-50. 10.1016/j.esr.2019.01.006. Goetzberger, A. & Zastrow, A. (1982). On the coexistence of solar-energy conversion and plant cultivation. Int. J. Sol. Energy, 1, 55-69. 10.1080/01425918208909875. Han, J. W., Jean, M. J., Lee, H. J., Lee, S. K., Seo, D. S., Seo, J. H, 2020), Growth characteristics of Chinese cabbage under agro-photovolatic power system. In: Proceedings of the KSAM APCs 2021 autumn conference: KSAM, 72 -76. Hayat, M. B., Ali, D., Monyake, K. C., Alagha, L. & Ahmed, N. (2019). Solar energy - A look into power generation, challenges, and a solar-powered future. Int. J. Energy Res., 43, 1049-1067. 10.1002/er.4252. Hernandez, R. R., Armstrong, A., Burney, J., Ryan, G., Moore, O’Leary, K. & Diédhiou, I. (2019). Techno-ecological synergies of solar energy for global sustainability. Nat. Sustain., 2, 560-568. 10.1038/s41893-019-0309-z. Hunt, L. A., Kuchar, L. & Swanton, C. J. (1998). Estimation of solar radiation for use in crop modelling. Agric. Forest Meteorol., 91, 293-300. 10.1016/S0168-1923(98)00055-0. India Agrovoltaics Allauce (2024). Online: https://india.agripv.org//#contact. 25.02.2025 IFEEA, (2022), 9th International Forum on Electrical Engineering and Automation, https://2022.ifeea.info/,25.02.2025. Je, S-M., Son, S. G., Woo, S. Y., Byun, K. O. & Kim, C.-S. (2006). Photosynthesis and chlorophyll contents of Chloranthus glaber under different shading treatments. Korean J. Agric. Forest Meteorol., 8, 54-60. Jiang S., D. Tang, L. Zhao, C. Liang, N. Cui, D. Gong, Y. Wang, Y. Feng, X. Hu, Y. (2022). Effects of different photovoltaic shading levels on kiwifruit growth, yield and water productivity under “agrivoltaic” system in Southwest China, Agricultural Water Management 269 (2022) 107675, https://doi.org/10.1016/j.agwat.2022.107675 Kang, M., Sohn, S., Park, J., Kim, J., Choi, S.-W. & Cho, S. (2021). Agro-environmental observation in a rice paddy under an agrivoltaic system: Comparison with the environment outside the system. Korean J. Agric. Forest Meteorol., 23, 141-148. 10.5532/KJAFM.2021.23.3.141. Katsikogiannis, O. A., Ziar, H. & Isabella, O. (2022). Integration of bifacial photovoltaics in agrivoltaic systems: A synergistic design approach. Appl. Energy, 309, Article 118475. 10.1016/j.apenergy.2021.118475. Kim, G. (2020). Development of domestic agrophotovoltaic system and analysis and consideration of crops growth characteristics. Bull. Korean Photovolt. Soc., 6, 15-24. Kim S., Kim, S. & Yoon, C.-Y. (2021). An efficient structure of an agrophotovoltaic system in a temperate climate region. Agronomy, 11, 1584. 10.3390/agronomy11081584. Kim, S. & Kim, S. (2021), Performance estimation modeling via machine learning of an agrophotovoltaic system in South Korea. Energies, 14, 6724. 10.3390/en14206724. Kim, W., Nam, J., Gim, G. H., Kim, D. S. & Lim, C. (2021). Investigation on the effect of abnormal climate in high value added crops utilizing agrophotovoltaic structures. Curr. Photovolt. Res., 9, 45-50. 10.21218/CPR.2021.9.2.045. Kwon, O. & Lee, K.-S. (2021), Agrophotovoltaic designs: Irradiation analysis on and under PV modules. J. Korean Sol. Energy Soc., 41, 9-23. 10.7836/kses.2021.41.2.009. Lee, S.-I, Lee, J.-J., Choe, J.-Y., Choe, W. & Seong, S.-J. (2019). Agricultural solar power generation for sharing solar energy, solar sharing. Magazine of the Korean society of agricultural engineers, 61, 2-11. Lee, S.-I., Choi, J.-Y., Sung, S.-J., Lee, S.-J., Lee, J. & Choi, W. (2020). Simulation and analysis of solar radiation change resulted from solar-sharing for agricultural solar photovoltaic system. Journal of the Korean Society of Agricultural Engineers, 62, 63-72. 10.5389/KSAE.2020.62.5.063. Lytle, W., Meyer, T. K., Tanikella, N. G., Burnham, L. Engel, J. & Schelly, C. (2021) , Conceptual design and rationale for a new agrivoltaics concept: Pasture-raised rabbits and solar farming. J. Cleaner Prod., 282, Article 124476. 10.1016/j.jclepro.2020.124476. Majumdar, D. & Pasqualetti, M. J. (2019) Analysis of land availability for utility-scale power plants and assessment of solar photovoltaic development in the state of Arizona. USA Renew Energy, 134, 1213-1231. 10.1016/j.renene.2018.08.064. Malu, P. R., Sharma, U. S. & Pearce, J. M. (2017). Agrivoltaic potential on grape farms. India Sustain. Energy Technol. Assess, 23, 104-110. 10.1016/j.seta.2017.08.004. Mo, X., Liu, S., Lin, Z., Xu, Y., Xiang, Y. & McVicar, T. R. (2005). Prediction of crop yield, water consumption and water use efficiency with a SVAT-crop growth model using remotely sensed data on the North China Plain. Ecol. Modell, 183, 301-322. 10.1016/j.ecolmodel.2004.07.032. Nagashima, A. (2015). Change Japan, Change the world. Advise of “solar sharing” Rick, Tokyo ., 5, 63-72. Olabi, A. M. & Abdelkareem, M. A. (2022). Renewable energy and climate change Renew. Sustain. Energy Rev., 158, Article 112111. 10.1016/j.rser.2022.112111. Papaioannou, G., Papanikolaou, N. & Retalis, D. (1993). Relationships of photosynthetically active radiation and shortwave irradiance. Theor. Appl. Climatol., 48, 23-27. 10.1007/BF00864910. Perna, A., Grubbs, E. K., Agrawal, R. & Bermel, P. (2019). Design considerations for agrophotovoltaic systems: Maintaining PV area with increased crop yield; 46th Photovolt Spec Conference (PVSC): IEEE. IEEE Publications. https://doi.org/10.1109/PVSC40753.2019.8981324. Photovoltaics in agriculture . Online: https:// www.photovoltaic-panel=com /blog /pv-in –agriculture., 25.02.2025, Poonia, S., Jat, N. K., Santra, P., Singh, A. K., Jain, D. & Meen, H. M. (2022). Techno-economic evaluation of different agri-voltaic designs for the hot arid ecosystem. India Renew Energy, 184, 149-163. 10.1016/j.renene.2021.11.074. Sacchelli, S., Garegnani, G., Geri, F., Grilli, G., Paletto, A. & Zambelli, P. (2016).Trade-off between photovoltaic systems installation and agricultural practices on arable lands: An environmental and socio-economic impact analysis for Italy Land Use Policy, 56, 90-99. 10.1016/j.landusepol.2016.04.024. Schindele, S., Trommsdorff, M., Schlaak, A., Obergfell, T., Bopp, G. & Reise, C. (2020). Implementation of agrophotovoltaics: Techno-economic analysis of the price-performance ratio and its policy implications. App.l Energy, 265, Article 114737. 10.1016/j.apenergy.2020.114737. Sekiyama, T. & Nagashima, A. (2019). Solar sharing for both food and clean energy production. Performance of agrivoltaic systems for corn, a typical shade-intolerant crop Environments, 6, 65-69. 10.3390/environments6060065. Sheep and photovoltaics - an unexpectedly good combination. Online: https://technews.bg.article-165696.html, (Bg)., 25.02.2025. Soon, B. M. & Shin, D. W. (2021). Impact of agricultural photovoltaic on the farm household income. J. Clim. Change Res., 12, 409-419. 10.15531/KSCCR.2021.12.5.409. Trinka, M., Eitzinger, J., Kapler, P., Dubrovský, M., Semerádová, D. & Žalud, Z. (2007). Effect of estimated daily global solar radiation data on the results of crop growth models. Sensors (Basel), 7, 2330-2362. 10.3390/s7102330. Trommsdorff, M., Kang, J., Reise, C., Schindele, S., Bopp, G. & Ehmann, A. (2021). Combining food and energy production: Design of an agrivoltaic system applied in arable and vegetable farming in Germany Renew. Sustain Energy Rev., 140, Article 110694. 10.1016/j.rser.2020.110694. Valle, B., Simonneau, T., Sourd, F., Pechier, P., Hamard, P. & Frisson, T. (2017). Increasing the total productivity of a land by combining mobile photovoltaic panels and food crops. Appl. Energy, 206, 14951507. 10.1016/j.apenergy.2017.09.113View PDFView articleView in ScopusGoogle Scholar. Wang, D., Zhang, Y. & Sun, Y. A. (2018). Criterion of crop selection based on the novel concept of an agrivoltaic unit and M-matrix for agrivoltaic systems; 2018 7th World Conference on Photovoltaic Energy Conversion (WCPEC). A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC: IEEE. IEEE Publications, 1491–1496. https://doi.org/10.1109/PVSC.2018.8547609. Weselek, A., Ehmann, A. & Zikel, S. (2019). Agrovovoltaic sistems aplications chalenses and opportuites. A review. Agron., Sustain. Dev., 39, 35. http:// doi.org.10.1007/s13593-019-0581-3. World Ressurce Institute. (2023). https:// www.wri.org.research. Yoon, C., Choi, S., An, K.-N., Ryu, J.-H., Jeong, H. & Cho, J. (2019). Preliminary experiment of the change of insolation under solar panel mimic shading netKorean. J. Agric. Forest Meteorol., 21, 358-365. 10.5532/KJAFM.2019.21.4.358. |
|
| Date published: 2025-04-29
Download full text