Risk status of semi-arid Zimbabwean indigenous cattle populations under conservation programs
Calisto Gwatirisa

, Sizo Moyo

, Bester T. Mudereri

, Reagan Mudziwapasi

, Anderson Munengwa, Jessica Pullen

, Alban Mugoti

, Fortune N. Jomane

Abstract: Indigenous cattle breeds play a crucial role in most agricultural systems, providing sustainable livelihoods, cultural value, and genetic diversity, well-suited to semi-arid environments. The study aimed to assess the population structure and risk status of three indigenous beef cattle breeds, Tuli, Mashona, and Nkone, focusing on effective population size (Ne), number of females (L), and additional risk factors. Pedigree records for 37,081 Tuli, 12,935 Mashona, and 9,489 Nkone cattle were analyzed using the online POPREP software. Pedigree completeness over six generations varied, with the lowest completeness observed in the Nkone (23.2%), and the highest in the Mashona (25.9%). Average generation intervals ranged between 6.4 and 11.0 years, with inbreeding rates per generation of 0.26% for Mashona, 0.32% for Tuli, and 0.18% for Nkone. Effective population sizes were estimated at 266 for Tuli, 182 for Mashona, and 135 for Nkone, classifying Mashona and Nkone populations as endangered and in need of conservation, while Tuli requires ongoing monitoring. Additional risk factors, including geographic concentration and cultural value, further confirm the endangered status of these breeds. These findings highlight the critical need to strengthen conservation efforts to preserve the genetic diversity of Zimbabwe’s indigenous cattle populations.
Keywords: Anthropogenic factors; Effective population size; Generation interval; Inbreeding; Pedigree completeness
Citation: Gwatirisa, C., Moyo, S., Mudereri, B. T., Mudziwapasi, R., Munengwa, A., Pullen, J., Mugoti, A. & Jomane, F. N. (2025). Risk status of semi-arid Zimbabwean indigenous cattle populations under conservation programs. Bulgarian Journal of Animal Husbandry, 62(1), 3-10.
References: (click to open/close) | Abin, S., Theron, H. E. & Van Marle-Köster, E. (2016). Population structure and genetic trends for indigenous African beef cattle breeds in South Africa. South African Journal of Animal Science, 46(2), 152-156. DOI: 10.4314/sajas.v46i2.5. Alderson, L. (2010). Breeds at risk: Criteria and classification. In Report from a Seminar Held in London (pp. 16–17). AU-IBAR (2019). The State of Farm Animal Genetic Resources in Africa. AU-IBAR publication. https://www.au-ibar.org/sites/default/files/2020-10/gi_20191107_state_farm_animal_genetic_resources_africa_full_book_en.pdf. Bijima, P. (2020). Long-term genetic contributions. Prediction of rates of inbreeding and genetic gain in selected populations. Ph.D. Thesis, Wageningen University, The Netherlands. https://library.wur.nl/WebQuery/wurpubs/63991. Boichard, D., Maignel, L. & Verrier, E. (1997). The value of using probabilities of gene origin to measure genetic variability in a population. Genetics Selection Evolution, 29(1), 5-23. https://www.gse-journal.org/articles/gse/pdf/1997/01/GSE_0999-193X_1997_29_1_ART0001.pdf. FAO (Food and Agriculture Organization) (1998b). Secondary guidelines for development of national farm animal genetic resources management plans. Management of small populations at risk. Initiative for Domestic Animal Diversity (IDAD). Geneva. FAO (Food and Agriculture Organization). (2007). Global plan of action for animal genetic resources and the Interlaken declaration. Rome: FAO, 38 pp. https://openknowledge.fao.org/server/api/core/bitstreams/88062e21-b652-4c9d-bfdd-9090148430e8/content. FAO (2011). Molecular genetic characterization of animal genetic resources. FAO Animal Production and Health Guidelines, No. 9, Rome. https://www.fao.org/4/i2413e/i2413e00.pdf. Faria, F. J. C., Filho, A. E. V., Madalena, F. E. & Josahkian, L. A. (2009). Pedigree analysis in the Brazilian Zebu breeds. Journal of Animal Breeding and Genetics, 126(2), 148-153. https://doi.org/10.1111/j.1439-0388.2008.00767.x. Francis, J. & Sibanda, S. (2001). Participatory action research experiences in smallholder dairy farming in Zimbabwe. Livestock Research for Rural Development, 13(3), 1-6. Gandini, G. C., Ollivier, L., Danell, B., Distl, O., Georgoudis, A., Groeneveld, E., ... & Woolliams, J. A. (2004). Criteria to assess the degree of endangerment of livestock breeds in Europe. Livestock Production Science, 91(1-2), 173-182. Gororo, E., Makuza, S. M., Chatiza, F. P., Chidzwondo, F. & Sanyika, T. W. (2018). Genetic diversity in Zimbabwean Sanga cattle breeds using microsatellite markers. South African Journal of Animal Science, 48(1), 128-141. Groeneveld, E., Westhuizen, B. V. D., Maiwashe, A., Voordewind, F. & Ferraz, J. B. S. (2009). POPREP: a genetic report for population management. Genetics and Molecular Research, 8(3), 1158-1178. Gwatirisa, C., Mudereri, B. T., Chitata, T., Mukanga, C., Ngwenya, M. M., Muzvondiwa, J. V., ... & Sungirai, M. (2022). Microhabitat and patch selection detection from GPS tracking collars of semi-free ranging Mashona cattle within a semi-arid environment. Livestock Science, 261, 104963. Jarnecka, O., Bauer, E. A. & Jagusiak, W. (2021). Pedigree analysis in the Polish Red cattle population. Animals, 15(6), 100238. Kamiti, D., Ilatsia, E., Bett, R. & Kahi, A. (2016). Population structure and demographic trends of the registered Sahiwal cattle in Kenya. Tropical Animal Health and Production, 48, 1029-1036. Leroy, G., Gicquel, E., Boettcher, P., Besbes, B., Furre, S., Fernandez, J., ... & Baumung, R. (2020). Coancestry rate’s estimate of effective population size for genetic variability monitoring. Conservation Genetics Resources, 12, 275-283. Mc Parland, S., Kearney, J. F., Rath, M. & Berry, D. P. (2007). Inbreeding effects on milk production, calving performance, fertility, and conformation in Irish Holstein-Friesians. Journal of Dairy Science, 90(9), 4411-4419. Mirzaee Ilaly, M., Hassani, S., Ahani Azari, M., Abdollahpour, R. & Naghavian, S. (2019). An investigation on population structure and inbreeding of Sangsari sheep. Iranian Journal of Applied Animal Science, 9(4), 659–667. Naskar, S., Gowane, G. R., Chopra, A., Paswan, C. & Prince, L. L. L. (2012). Genetic adaptability of livestock to environmental stresses. In: Environmental Stress and Amelioration in Livestock Production (pp. 317–378). Springer, Berlin, Heidelberg. Nyamushamba, G. B., Mapiye, C., Tada, O., Halimani, T. E. & Muchenje, V. (2017). Conservation of indigenous cattle genetic resources in Southern Africa’s smallholder areas: Turning threats into opportunities—A review. Asian-Australasian Journal of Animal Sciences, 30(5), 603. DOI: 10.5713/ajas.16.0026. Pienaar, L., Neser, F. W. C., Grobler, J. P., Scholtz, M. M. & MacNeil, M. D. (2015). Pedigree analysis of the Afrikaner cattle breed. Animal Genetic Resources, 57, 51–56. DOI: 10.1017/S2078633615000141. Polak, G., Krupiński, J., Martyniuk, E., Calik, J., Kawęcka, A., Krawczyk, J., ... & Tomczyk-Wrona, I. (2021). The risk status of Polish local breeds under conservation programmes: A new approach. Annals of Animal Science, 21(1), 125–140. DOI: 10.2478/aoas-2020-0078. Reis Filho, J. C., Lopes, P. S., Verneque, R. D. S., Torres, R. D. A., Teodoro, R. L. & Carneiro, P. L. S. (2010). Population structure of Brazilian Gyr dairy cattle. Revista Brasileira de Zootecnia, 39, 2640-2645. Tavirimirwa, B., Mwembe, R., Ngulube, B., Banana, N. Y. D., Nyamushamba, G. B., Ncube, S. & Nkomboni, D. (2013). Communal cattle production in Zimbabwe: A review. Livestock Research for Rural Development, 25(12), Article #217. http://www.lrrd.org/lrrd25/12/tavi25217.htm. Tawonezvi, H. R., Dzama, K. & Khombe, T. (2021). Performance of Indigenous Animal Genetic Resources in Zimbabwe and Their Potential Contribution to the Livestock Sector. 1st Edition, Reach Publishers, South Africa. https://books.google.co.zw/books/about/Performance_of_Indigenous_Animal_Genetic.html?id=kNeAzwEACAAJ. Toro, M. & Lopez-Fanjul, C. (1998). Recent advances in animal breeding theory and its possible application in aquaculture. In D. M. Bartley & B. Basurco (Eds.), Proceedings of the TECAM Seminar on Genetics and Breeding of Mediterranean Aquaculture Species (pp. 31–45). Zaragoza, Spain: FAP. Verrier, E., Audiot, A., Bertrand, C., Chapuis, H., Charvolin, E., Danchin-Burge, C., ... & Sabbagh, M. (2015). Assessing the risk status of livestock breeds: A multi-indicator method applied to 178 French local breeds belonging to ten species. Animal Genetic Resources, 57, 105–118. DOI: 10.1017/S2078633615000177. Woldeyohannes, T., Betsha, S. & Melesse, A. (2024). Genetic improvement approaches of indigenous cattle breeds for adaptation, conservation, and sustainable utilization to changing climate in Ethiopia. Veterinary Integrative Sciences, 22(1), 231–250. DOI: 10.12982/VIS.2024.018. Zimunda Farming (2022). Farming. Harare, Zimbabwe, ZiMunda, 10, 34. Retrieved February 21, 2024, from https://zimunda.co.zw/wp-content/uploads/2022/11/ZiMunda_Issue_10_Digital_Official_.pdf.
|
|
| Date published: 2025-02-26
Download full text