Opportunities to reduce methane emissions (CH4) in the digestive processes of ruminant animals. Review
E. Videv, T. Angelova, J. Krustanov
Резюме: The article covers an extremely important problem concerning the pollution of the environment with greenhouse gases, considered one of the causes of global warming of the Earth. The greenhouse gas (GHG) methane is continuously released as a by-product of enteric fermentation, which is largely produced by the digestive system of ruminants. Methane reduction from ruminants is not a new area of research. However, the number of scientific publications in this field has increased rapidly over the past two decades due to the emphasis placed on the effects of greenhouse gas emissions on climate change. The review aims to explore different options and strategies for reducing methane emissions in the digestive process of ruminants. In conclusion, the authors believe that the studies done so far are substantial but insufficient to draw definitive conclusions. Further studies are needed to develop a coherent system and strategy to reduce methane emissions from ruminants.
Ключови думи: enteric fermentation; greenhouse gas emissions; mitigation strategies; ruminants
Цитиране: Videv, E., Angelova, T. & Krustanov, J. (2024). Opportunities to reduce methane emissions (CH4) in the digestive processes of ruminant animals. Review. Bulgarian Journal of Animal Husbandry, 61(1), 41-54.
Литература: (click to open/close) | Abecia, L., Toral, P. G., Martín-García, A. I., Martínez, G., Tomkins, N. W., Molina-Alcaide, E., Newbold, C. J. & Yáñez-Ruiz, D. R. (2012). Effect of bromochloromethane on methane emission, rumen fermentation pattern, milk yield, and fatty acid profile in lactating dairy goats. Journal of Dairy Science, 95, 2027–2036. Anele, U. Y., Yang, W. Z., McGinn, P. J., Tibbetts, S. M. & McAllister T. A. (2016). Ruminal in vitro gas production, dry matter digestibility, methane abatement potential, and fatty acid biohydrogenation of six species of microalgae. Canadian Journal of Animal Science, 96(3), 354-363. Bayat, A. & Shingfield, K. J. (2012). Overview of nutritional strategies to lower enteric methane emissions in ruminants. In: Maataloustieteen Päivät, 1–7. Beauchemin, K. А., Grainger, C., Auldist, M. J., Clarke, T., K. A., Mcginn, S. M., Hannah, M. C., Eckard, R. J. & Lowe, L. B. (2008). Use of Monensin Controlled-Release Capsules to Reduce Methane Emissions and Improve Milk Production of Dairy Cows Offered Pasture Supplemented With Grain. Journal of Dairy Science, 91, 1159–1165. https://doi:10.3168/jds.2007-0319. Beauchemin, K. А., Grainger, C., Clarke, T., Auldist, M. J., K. A., Mcginn, S. M., Waghorn, G. C. & Eckard, R. J. (2009). Mitigation of greenhouse gas emissions from dairy cows fed pasture and grain through supplementation with acacia mearnsii tannins. Canadian Journal of Animal Science (in press). Beauchemin, K. А., Kreuzer, M., O’Mara, F. & McAllister, T. A. (2008). Nutritional management for enteric methane abatement: A review. Australian Journal of Experimental Agriculture, 48, 21–27. Beauchemin, K. A., Ungerfeld, E. M., Eckard, R. J. & Wang, M. (2020). Review: Fifty years of research on rumen methanogenesis: lessons learned and future challenges for mitigation. Animal, 14(S1), 2–16. https://doi.org/10.1017/S1751731119003100. Beck, M. R., Thompson, L. R., White, J. E., Williams, G. D., Place, S. E., Moffet, C. A., Gunter, S. A. & Reuter, R. R. (2018). Whole cottonseed supplementation improves performance and reduces methane emission intensity of grazing beef steers. Professional Animal Scientist, 34(4), 339-345. Benchaar, C. (2020). Feeding oregano oil and its main component carvacrol does not affect ruminal fermentation, nutrient utilization, methane emissions, milk production, or milk fatty acid composition of dairy cows. Journal of Dairy Science, 103, 1516-1527. Benchaar, C., Pomar, C. & Chiquette, J. (2011). Evaluation of dietary strategies to reduce methaneproduction in ruminants: A modelling approach. Canadian Journal of Animal Science, 81, 563–574. Beyz, S. B. (2020). Effect of lavender and peppermint essential oil on in vitro methanogenesis and fermentation of feed with buffalo rumen liquor. Buffalo Bull., 39, 311-321. Biris-Dorhoi, E. S. et al. (2020). Macroalgae – A Sustainable Source of Chemical Compounds with Biological Activities. Nutrients, 12(10), 3085. https://doi.org/10.3390. Boadi, D., Benchaar, C., Chiquette, J. & Massè, D. (2004). Mitigation strategies to reduce enteric methane emissions from dairy cows: Update review. Canadian Journal of Animal Science, 84, 319–335. Boadi, D. A. & Wittenberg, K. M. (2002). Methane production from dairy and beef heifers fed forages differing in nutrient density using the sulphur hexafluoride (SF6) tracer gas technique. Canadian Journal of Animal Scienc, 82, 201–206. Busquet, M., Calsamiglia, S., Ferret, A., Carro, M. D. & Kamel, C. (2005). Effect of garlic oil and four of its compounds on rumen microbial fermentation. Journal of Dairy Science, 88, 4393-4404. Calsamiglia, S., Busquet, M., Cardozo, P. W., Castillejos, L. & Ferret, A. (2007). Invited Review: Essential Oils as Modifiers of Rumen Microbial Fermentation. Journal of Dairy Science, 90, 2580–2595. Carulla, J. E., Kreuzer, M., Machmüller, A. & Hess, H. D. (2005). Supplementation of acacia mearnsii tannins decreases methanogenesis and urinary nitrogen in forage-fed sheep. Australian Journal of Agricultural Research, 56, 961-970. Chagas, J. C., Ramin, M. & Krizsan, S. J. (2019). In Vitro Evaluation of Different Dietary Methane Mitigation Strategies.Animals/MDPI, 9(12), 1120. https://doi.org/10.3390/ani9121120. Chaucheyras, F., Fonty, G., Bertin, G. & Gouet, P. (1995). In vitro utilization by a ruminal acetogenic bacterium cultivated alone or in association with an archaea methanogen is stimulated by a probiotic strain of Saccharomyces cerevisiae. Applied Environmental Microbiology, 61, 3466–3467. Cheeke, P. R. (2000). Actual and potential applications of Yucca schidigera and Quillaja saponaria saponins in human and animal nutrition. Journal of Animal Science, 77, 1-10. Cobellis, G., Petrozzi, A., Forte, C., Acuti, G., Orrù, M. & Marcotullio, M. C. (2015). Evaluation of the effects of mitigation on methane and ammonia production by using Origanum vulgare L. and Rosmarinus officinalis L. essential oils on in vitro rumen fermentation systems. Sustainability, 7, 12856-12869. Denchak, M. (2018). Fossil Fuels: The Dirty Facts. Natural Resources Defense Council. https://www.nrdc.org/stories/fossil-fuels-dirty-facts. Dijkstra, J., Bannink, A., France, J., Kebreab, E. & van Gastelen, S. (2018). Short communication: Antimethanogenic effects of 3-nitrooxypropanol depend on supplementation dose, dietary fiber content, and cattle type. Journal of Dairy Science, 101(10), 9041–9047. https://doi.org/10.3168/jds.2018-14456. Duin, E. C., Wagner, T., Shima, S., Prakash, D., Cronin, B., Yáñez-Ruiz, D. R., Duval, S., Rümbeli, R., Stemmler, R. T., Thauer, R. K. & Kindermann, M. (2016). Mode of action uncovered for the specific reduction of methane emissions from ruminants by the small molecule 3-nitrooxypropanol. Proceedings of the National Academy of Sciences, 113(22), 6172–6177.https://doi.org/10.1073/pnas.1600298113. Eckard, R. J., Grainger, C. & de Klein, C. A. M. (2010). Options for the abatement of methane and nitrous oxide from ruminant production: A review. Livestock Science, 130, 47–56. EFSA, Bampidis, V., Azimonti, G., Bastos, M. de L., Christensen, H., Dusemund, B., Fašmon Durjava, M., Kouba, M., López-Alonso, M., López Puente, S., Marcon, F., Mayo, B., Pechová, A., Petkova, M., Ramos, F., Sanz, Y., Villa, R. E., Woutersen, R., Aquilina, G., Bories, G., Brantom, P. G., Gropp, J., Svensson, K., Tosti, L., Anguita, M., Galobart, J., Manini, P., Tarrès-Call, J. & Pizzo, F. (2021). Safety and efficacy of a feed additive consisting of 3- nitrooxypropanol (Bovaer® 10) for ruminants for milk production and reproduction (DSM Nutritional Products Ltd). EFSA Journal, 19(11), e06905.https://doi.org/10.2903/j.efsa.2021.6905. Environmental Defense Fund (EDF) (2022). Methane: A Crucial Opportunity in the Climate Fight .EDF. https://www.edf.org/climate/methane-crucial-opportunity-climatefight#:~:text=Methane%20has%20more%20than%2080,by%20methane%20from%20human%20actions. Eugène, M., Masse, D., Chiquette, J. & Benchaar, C. (2008). Meta-analysis on the effects of lipidsupplementation on methane production in lacting dairy cows. Canadian Journal of Animal Science, 88, 331–334. European Commission (2022a). Daily News 23 / 02 / 2022. European Commission European Commission. [Text]. https://ec.europa.eu/commission/presscorner/detail/de/mex_22_1304 [2022-03-29]. Gillman, R. (2022). Challenges And Prospects: Reducing U.s. Methane Emissions Via Red Macroalgae (asparagopsis Taxiformis) Feed Additives To Inhibit Enteric Methane Production From Ruminant Livestock. Public Health Theses, 2154. https://elischolar.library.yale.edu/ysphtdl/2154. Grainger, C., Auldist, M. J., Clarke, T., Beauchemin, K. A., Mcginn, S. M., Hannah, M. C., Eckard, R. J. & Lowe, L. B. (2008). Use of Monensin Controlled-Release Capsules to Reduce Methane Emissions and Improve Milk Production of Dairy Cows Offered Pasture Supplemented with Grain. Journal of Dairy Science, 91, 1159–1165. doi: 10.3168/jds.2007-0319. Günal, M., Pinski, B. & AbuGhazaleh, A. (2017). Evaluating the effects of essential oils on methane production and fermentation under in vitro conditions. Italian Journal of Animal Science, 16, 500-506. Guyader, J., Ungerfeld, E. M. & Beauchemin, K. A. (2017). Redirection of Metabolic Hydrogen by Inhibiting Methanogenesis in the Rumen Simulation Technique (RUSITEC). Frontiers in Microbiology, 8. https://www.frontiersin.org/article/10.3389/fmicb.2017.00393. [2022-03-29]. Haisan, J., Sun, Y., Guan, L. L., Beauchemin, K. A., Iwaasa, A., Duval, S., Barreda, D. R. & Oba, M. 2014. The effects of feeding 3-nitrooxypropanol on methane emissions and productivity of Holstein cows in mid lactation. Journal of Dairy Science, 97, 3110–3119. Hart, K. J., Yáñez-Ruiz, D. R., Duval, S. M., McEwan, N. R. & Newbold, C. J. (2008). Plant extracts to manipulate rumen fermentation. Animal Feed Science and Technology, 147, 8–35. Hegarty, R. S. & Gerdes, R. (1998). Hydrogen production and transfer in the rumen. Recent Advances Animal Nutrition, 12, 37-44. Holtshausen, L., Chaves, A. V, Beauchemin, K. A., McGinn, S.M., McAllister, T. A, Odongo, N. E., Cheeke, P. R. & Benchaar, C. (2009). Feeding saponin-containing Yucca schidigera and Quillaja saponaria to decrease enteric methane production in dairy cows. Journal of Dairy Science, 92, 2809–2821. Hristov, A. N., Oh, J., Firkins, J. L., Dijkstra, J., Kebreab, E., Waghorn, G., Makkar, H. P. S., Adesogan, A. T., Yang, W., Lee, C., Gerber, P. J., Henderson, B. & Tricarico, J. M. (2013a). SPECIAL TOPICS-Mitigation of methane and nitrous oxide emissions from animal operations: I. A review of enteric methane mitigation options. Journal of Animal Science, 91, 5045–5069. Hristov, A. N., Oh, J., Giallongo, F., Frederick, T. W., Harper, M. T., Weeks, H. L., Branco, A. F., Moate, P. J., Deighton, M. H., Williams, S. R. O. & Kindermann, M. (2015). An inhibitor persis tently decreased enteric methane emission from dairy cows with no negative effect on milk production. Proceedings of the National Academy of Sciences, 112(34), 10663-10668. Hristov, A. N., Oh, J., Lee, C., Meinen, R., Montes, F., Ott, T., Firkins, J., Rotz, A., Dell, C., Adesogan, A., Yang, W., Tricarico, J., Kebreab, E., Waghorn, G. & Dijkstra, J. & Oosting, S. (2013b). Mitigation of greenhouse gas emissions in livestock production – A review of technical options for non-CO2 emissions. Edited by Pierre J. Gerber, Benjamin Henderson and Harinder P.S. Makkar. FAO Animal Production and Health Paper, No. 177. FAO, Rome, Italy. Hristov, A. N., Ropp, J. K., Zaman, S. & Melgar, A. (2008). Effects of essential oils on in vitro ruminal fermentation and ammonia release. Animal Feed Science and Technology, 144, 55–64. Hu, W. L., Liu, J. X., Ye, J. A., Wu, Y. M. & Guo, Y. Q. (2005). Effect of tea saponin on rumen fermentation in vitro. Animal Feed Science and Technology, 120, 333–339. Hulshof, R. B. A., Berndt, A., Gerrits, W. J. J., Dijkstra, J., van Zijderveld, S. M., Newbold, J. R. & Perdok, H. B. (2012). Dietary nitrate supplementation reduces methane emission in beef cattle fed sugarcane-based diets. Journal of Animal Science, 90, 2317–2323. Janssen, P. H. (2010). Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Animal Feed Science and Technology, 160, 1–22. Jenkins, T. (1997). Success of fat in dairy rations depends on the amount. Feedstuffs, 69, 11-12. Kholif, A. E., Morsy, T. A., Matloup, O. H., Anele, U. Y., Mohamed, A. G. & El-Sayed, A. B. (2017). Dietary Chlorella vulgaris microalgae improves feed utilization, milk production and concentrations of conjugated linoleic acids in the milk of Damascus goats. Journal of Agricultural Science, 155(3), 508-518. Kinley, R. D., de Nys, R., Vucko, M. J., Machado, L. & Tomkins, N. W. (2016). The red macroalgae Asparagopsis taxiformis is a poten natural antimethanogenic that reduces methane production during in vitro fermentation with rumen fluid. Animal Production Science, 56, 282-289.https://doi.org/10.1071/AN15576. Kinley, R. D., Martinez-Fernandez, G., Matthews, M. K., de Nys, R., Magnusson, M. & Tomkins, N. W. (2020). Mitigating the carbon footprint and improving productivity of ruminant livestock agriculture using a red seaweed. Journal of Cleaner Production, 259, 120836. https://doi.org/10.1016/j.jclepro.2020.120836. Klein, A., Allmansberger, R., Bokranz, M., Knaub, S., Müller, B. & Muth, E. (1988). Comparative analysis of genes encoding methyl coenzyme M reductase in methanogenic bacteria. Molecular and General Genetics, 213, 409–420. Knapp, J. R., Laur, G. L., Vadas, P. А, Weiss, W. P. & Tricarico, J. M. (2014). Invited review: Enteric methane in dairy cattle production: quantifying the opportunities and impact of reducing emissions. Journal of Dairy Science, 97, 3231–3261. Knight, T., Ronimus, R. S., Dey, D., Tootill, C., Naylor, G., Evans, P., Molano, G., Smith, A., Tavendale, M., Pinares-Patiño, C. S. & Clark, H. (2011). Chloroform decreases rumen methanogenesis and methanogen populations without altering rumen function in cattle. Animal Feed Science and Technology, 166, 101–112. Kumar, S., Choudhury, P. K., Carro, M. D., Griffith, G. W., Dagar, S. S., Puniya, M., Calabro, S., Ravella, S. R., Dhewa, T., Upadhyay, R. C., Sirohi, S. K., Kundu, S. S., Wanapat, M. & Puniya, A. K. (2014). New aspects and strategies for methane mitigation from ruminants. Applied Microbiology and Biotechnology, 98, 31–44. LaabouriI, F., Guerouali A., Alali S., Remmal A. & Ajbilou M. (2017). Effect of a natural food additive rich in thyme essential oil on methane emissions in dairy cows. Revue Marocaine des Sciences Agronomiques et Vétérinaires, 5, 287-292. Leng, R. A. (2008). The potential of feeding nitrate to reduce enteric methane production in ruminants. A report to the department of climate change. Commonwealth Government of Australia, Canberra. http://www.penambulbooks.com. Li, X., Norman, H. C., Kinley, R. D., Laurence, M., Wilmot, M., Bender, H., de Nys, R. & Tomkins, N. W. (2016). Asparagopsis taxiformis decreases enteric methane production from sheep. Animal Production Science, 58, 681-688. Lopes, J. C., de Matos, L. F., Harper, M. T., Giallongo, F., Oh, J., Gruen, D., Ono, S., Kindermann, M., Duval, S. & Hristov, A. N. (2016). Effect of 3-nitrooxypropanol on methane and hydrogen emissions, methane isotopic signature, and ruminal fermentation in dairy cows. Journal of Dairy Science, 99(7), 5335–5344. https://doi.org/10.3168/jds.2015-10832. Maccarana, L. (2016). Nutritional strategies to reduce methane emissions in dairy cows using in vitro technique. Doctoral dissertation, Università degli studi di Padova. Machado, L., Magnusson M., Paul N. A., de Nys R. & Tomkins N. (2014). Effects of marine and freshwater macroalgae on in vitro total gas and methane production. PLoS One, 9(1), e85289. Machado, L., Magnusson, M. & Paul, N. A. et al. (2016). Dose-response effects of Asparagopsis taxiformis and Oedogonium sp. on in vitro fermentation and methane production. Journal of Applied Phycology, 28, 1443–1452. https://doi.org/10.1007/s10811-015-0639-9. Macheboeuf, D., Morgavi, D. P., Papon, Y., Mousset, J. L. & Arturo-Schaan, M. (2008). Dose-response effects of essential oils on in vitro fermentation activity of the rumen microbial population. Animal Feed Science and Technology, 145, 335–350. Mao, H. L., Wang, J. K., Zhou, Y. Y. & Liu, J. X. (2010). Effects of addition of tea saponins and soybean oil on methane production, fermentation and microbial population in the rumen of growing lambs. Livestock Science, 129, 56–62. Martinez-Fernandez, G., Arco, A., Abecia, L., Cantalapiedra-Hijar, G., Molina-Alcaide, E., Martin-Garcia, A. I., Kindermann, M., Duval, S. & Yanez-Ruiz, D. R. (2013). The addition of ethyl-3-nitrooxy propionate and 3-nitrooxypropanol in the diet of sheep sustainably reduces methane emissions and the effect persists over a month. Advances in Animal Biosciences 4, 368. Martinez-Fernandez, G., Denman, S. E., Yang, C., Cheung, J., Mitsumori, M. & McSweeney, C. S. (2016). Methane inhibition alters the microbial community, hydrogen flow, and fermentation response in the rumen of cattle. Frontiers in Microbiology 7, 1122, 1-14. McAllister, T. A. & Newbold, C. J. (2008). Redirecting rumen fermentation to reduce methanogenesis. Australian Journal of Experimental Agriculture, 48, 7-13. McGinn, S. M., Beauchemin, K. A., Coates, T. & Colombatto, D. (2004). Methane emissions from beef cattle: effect of monensin, sunflower oil, enzymes, yeast and fumaric acid. Journal of Animal Science, 82, 3346–3356. McGinn, S. M., Flesch, T. K., Beauchemin, K. A., Shreck, A. & Kindermann, M. (2019). Micrometeorological methods for measuring methane emission reduction at beef cattle feedlots: Evaluation of 3-nitrooxypropanol feed additive. Journal of Environmental Quality, 48(5), 1454-1461. https://doi.org/10.2134/jeq2018.11.0412. Meinshausen, M., Lewis, J., McGlade, C., Gütschow, J., Nicholls, Z., Burdon, R., Cozzi, L. & Hackmann, B. (2022). Realization of Paris Agreement pledges may limit warming just below 2°C. Nature, 604, 304–309. https://doi.org/10.1038/s41586-022-04553-z. Melgar, A., Harper, M. T., Oh, J., Giallongo, F., Young, M. E., Ott, T. L., Duval, S. & Hristov, A. N. (2020a). Effects of 3-nitrooxypropanol on rumen fermentation, lactational performance, and resumption of ovarian cyclicity in dairy cows. Journal of Dairy Science, 103(1), 410–432. https://doi.org/10.3168/jds.2019-17085. Melgar, A., Lage, C. F. A., Nedelkov, K., Räisänen, S. E., Stefenoni, H., Fetter, M. E., Chen, X., Oh, J., Duval, S., Kindermann, M., Walker, N. D. & Hristov, A. N. (2021). Enteric methane emission, milk production, and composition of dairy cows fed 3-nitrooxypropanol. Journal of Dairy Science, 104(1), 357–366. https://doi.org/10.3168/jds.2020-18908. Melgar, A., Welter, K. C., Nedelkov, K., Martins, C. M. M. R., Harper, M. T., Oh, J., Räisänen, S. E., Chen, X., Cueva, S. F., Duval, S. & Hristov, A. N. (2020b). Dose-response effect of 3-nitrooxypropanol on enteric methane emissions in dairy cows. Journal of Dairy Science, 103(7), 6145–6156. https://doi.org/10.3168/jds.2019-17840. Mernit, J. L. (2018). How Eating Seaweed Can Help Cows to Belch Less Methane. Yale School of the Environment, Yale Environment 360. https://e360.yale.edu/features/how-eating-seaweed-can-help-cows-to-belch-less-methane. Min, B. R., Parker, D., Brauer, D., Waldrip, H., Lockard, C., Hales, K., Akbay, A. & Augyte, S. (2021). The role of seaweed as a potential dietary supplementation for enteric methane mitigation in ruminants: challenges and opportunities. Animal Nutrition, 7(4), 1371-1387. https://doi.org/10.1016/j.aninu.2021.10.003. Mitsumori, M. & Sun, W. (2008). Control of rumen microbial fermentation for mitigating methane emissions from the rumen. Asian-Australasian Journal of Animal Science, 21, 144–154. Mitsumori, M., Shinkai, T., Takenaka, A., Enishi, O., Higuchi, K., Kobayashi, Y., Nonaka, I., Asanuma, N., Denman, S. E. & McSweeney, C. S. (2012). Responses in digestion, rumen fermentation and microbial populations to inhibition of methane formation by a halogenated methane analogue. British Journal of Nutrition, 108, 482–491. Moate, P. J., Richard, S., Williams, O., Deighton, M. H., Pryce, J. E., Hayes, B. J., Jacobs, J. L., Eckard, R. J., Hannah, M. C. & Wales, W. J. (2014). Mitigation of enteric methane emissions from the Australian dairy industry. Proceedings of the 6th Australasian Dairy Science Symposium, 121–140. Muñoz, C., Yan, T., Wills, D. A., Murray, S. & Gordon, A. W. (2012). Comparison of the sulfur hexafluoride tracer and respiration chamber techniques for estimating methane emissions and correction for rectum methane output from dairy cows. Journal of Dairy Science, 95, 3139–48. Murray, R. M., Bryant, M. A. & Leng, R. A. (1976). Rates of production of methane in the rumen and large intestine of sheep. British Journal of Nutrition, 36, 1–14. Mutsvangwa, T., Edwards I., Topps J. & Paterson, G. (1992). The Effect of Dietary Inclusion of Yeast Culture (Yea-Sacc)on Patterns of Rumen Fermentation, Food Intake and Growth of Intensively Fed Bulls. Animal Science, 55(1), 35-40. Odongo, N. E., Bagg, R., Vessie, G., Dick, P., Or-Rashid, M. M., Hook, S. E., Gray, J. T., Kebreab, E., France, J. & McBride, B. W. (2007). Long-term effects of feeding monensin on methane production in lactating dairy cows. Journal of Dairy Science, 90, 1781–1788. Ozkan, C. O., Kamalak, A., Atalay, A. I., Tatliyer, A. & Kaya, E. (2015). Effect of peppermint (Mentha piperita) essential oil on rumen microbial fermentation of barley grain. Journal of Applied Animal Research, 43, 287-290. Pal, K., Patra, A. K., Sahoo, A. & Mandal, G. P. (2014). Effect of nitrate and fumarate in Prosopis cineraria and Ailanthus excelsa leaves-based diets on methane production and rumen fermentation. Small Ruminant Research, 121, 168–174. Patra, A. K. & Saxena, J. (2010). A new perspective on the use of plant secondary metabolites to inhibit methanogenesis in the rumen. Phytochemistry, 71, 1198–1222. Patra, A. K. & Yu, Z. (2012). Effects of essential oils on methane production and fermentation by, and abundance and diversity of, rumen microbial populations. Applied and Environmental Microbiology, 78, 4271-4280. Pressman, B. C. (1976). Biological applications of ionophores. Annual Review of Biochemistry, 45, 501-530. Ramin, M. & Huhtanen, P. (2012). Development of an in vitro method for determination of methane production kinetics using a fully automated in vitro gas system-A modelling approach. Animal Feed Science and Technology, 174, 190-200. Rasmussen, J. & Harrison, A. (2011). The Benefits of Supplementary Fat in Feed Rations for Ruminants with Particular Focus on Reducing Levels of Methane Production. ISRN Veterinary Science, 1–10. Reynolds, C. K., Humphries, D. J., Kirton, P., Kindermann, M., Duval, S. & Steinberg, W. (2014). Effects of 3-nitrooxypropanol on methane emission, digestion, and energy and nitrogen balance of lactating dairy cows. Journal of Dairy Science, 97, 3777–3789. Rochfort, S., Parker, A. J. & Dunshea, F. R. (2008). Plant bioactives for ruminant health and productivity. Phytochemistry, 69, 299–322. Romero-Pérez, A., Okine, E. K., Guan, L. L., Duval, S. M., Kindermann, M. & Beauchemin, K. A. (2015). Effects of 3-nitrooxypropanol on methane production using the rumen simulation technique (Rusitec). Animal Feed Science and Technology, 209, 98–109. Romero-Perez, A., Okine, E. K., McGinn, S. M., Guan, L. L., Oba, M., Duval, S. M., Kindermann, M. & Beauchemin, K. A. (2014). The potential of 3-nitrooxypropanol to lower enteric methane emissions from beef cattle. Journal of Animal Science, 92(10), 4682-4693. Roque, B. M., Venegas, M., Kinley, R. D., De Nys, R., Duarte, T. L., Yang, X. & Kebreab, E. (2021). Red seaweed (Asparagopsis taxiformis) supplementation reduces enteric methane by over 80 percent in beef steers. PloS ONE, 16(3 March), 1–20. https://doi.org/10.1371/journal.pone.0247820. Roque, B. M., Salwen, J. K., Kinley, R. D. & Kebreab, E. (2019). Inclusion of Asparagopsis armata in lactating dairy cows’ diet reduces enteric methane emission by over 50 percent. Journal of Cleaner Production, 234, 132-138. https://doi.org/10.1016/j.jclepro.2019.06.193. Roque, B. M., Van Lingen, H. J., Vrancken, H. & Kebreab, E. (2019). Effect of mootral—a garlic-and citrus-extract-based feed additive—on enteric methane emissions in feedlot cattle. Translational Animal Science, 3(4), 1383-1388. Roy, D., Tomar, S. K., Sirohi, S. K., Kumar, V. & Kumar, M. (2014). Efficacy of different essential oils in modulating rumen fermentation in vitro using buffalo rumen liquor. Veterinary World, 7, 213-218. Sallam, S. M., Bueno, I. C., Brigide, P., Godoy, P. B., Vitti, D. M. & Abdalla, A. L. (2009). Efficacy of eucalyptus oil on in vitro ruminal fermentation and methane production. Options Mediter, 85, 267-272. Sauer, F. D., Fellner, V., Kinsman, R., Kramer, J. K. G., Jackson, H. A., Lee, A. J. & Chen, S. (1998). Methane output and lactation response in Holstein cattle with monensin or unsaturated fat added to the diet. Journal of Animal Science, 76, 906-914. Soliva, C. R., Amelchanka, S. L., Duval, S. M. & Kreuzer, M. (2011). Ruminal methane inhibition potential of various pure compounds in comparison with garlic oil as determined with a rumen simulation technique (Rusitec). British Journal of Nutrition, 106, 114-122. Spanghero, M., Zanfi, C., Fabbro, E., Scicutella, N. & Camellini, C. (2008). Effects of a blend of essential oils on some end products of in vitro rumen fermentation. Animal Feed Science and Technology, 145, 364–374. Stavert, A. R., Saunois, M., Canadell, J. G., Poulter, B., Jackson, R. B., Regnier, P., Lauerwald, R., Raymond, P. A., Allen, G. H., Patra, P. K., Bergamaschi, P., Bousquet, P., Chandra, N., Ciais, P., Gustafson, A., Ishizawa, M., Ito, A., Kleinen, T., Maksyutov, S. & Zhuang, Q. (2022). Regional trends and drivers of the global methane budget. Global Change Biology, 28, 182–200. https://doi.org/10.1111/gcb.15901. Storm, I. M. L. D., Hellwing, A. L. F., Nielsen, N. I. & Madsen, J. (2012). Methods for Measuring and Estimating Methane Emission from Ruminants. Animals, 2, 160–183. Symbrosia (2021). Why Methane | Seaweed. Symbrosia. https://symbrosia.co/seaweed. Tomkins, N. W. & Hunter, R. A. (2003). Methane mitigation in beef cattle using a patented anti-methanogen. Proceedings of the 2nd joint Australia and New Zealand forum on non-CO2 greenhouse gas emission from agriculture, October 2003. Lancemore Hill. Eds R.J. Eckard & W. Slattery p.F3. Australian Greenhouse Office: Canberra. ISBN 0-9579597-2-9. Tsiplakou, E., Abdullah, M. A. M., Skliros, D., Chatzikonstantinou, M., Flemetakis, E., Labrou, N. & Zervas, G. (2017). The effect of dietary Chlorella vulgaris supplementation on micro organism community, enzyme activities and fatty acid profile in the rumen liquid of goats. Journal of Animal Physiology and Animal Nutrition, 101(2), 275-283. U.S. EPA. (2022). Overview of GHG Emissions: Methane Emissions. EPA. https://www.epa.gov/ghgemissions/overview-greenhouse-gases#methane. Ungerfeld, E. M., Kohn, R. A., Wallace, R. J. & Newbold, C. J. (2007). A meta-analysis of fumarate effects on methane production in ruminal batch cultures. Journal of Animal Science, 85, 2556–2563. Vakili, A. R., Khorrami, B., Mesgaran, M. D. & Parand, E. (2013). The effects of thyme and cinnamon essential oils on performance, rumen fermentation and blood metabolites in Holstein calves consuming high concentrate diet. Asian-Australasian Journal of Animal Science, 26, 935-944. van Gastelen, S., Dijkstra, J., Binnendijk, G., Duval, S. M., Heck, J. M. L., Kindermann, M., Zandstra, T. & Bannink, A. (2020). 3-Nitrooxypropanol decreases methane emissions and increases hydrogen emissions of early lactation dairy cows, with associated changes in nutrient digestibility and energy metabolism. Journal of Dairy Science, 103(9), 8074–8093. https://doi.org/10.3168/jds.2019-17936. Van vugt, S. J., Waghorn, G. C., Clark, D. A. & Woodward, S. L. (2005). Impact of monensin on methane production and performance of cows fed forage diets. Proceedings of the New Zealand Society of Animal Production, 65, 362-366. Van Wesemael, D., Vandaele, L., Ampe, B., Cattrysse, H., Duval, S., Kindermann, M., Fievez, V., De Campeneere, S. & Peiren, N. (2019). Reducing enteric methane emissions from dairy cattle: Two ways to supplement 3-nitrooxypropanol. Journal of Dairy Science, 102(2), 1780–1787. https://doi.org/10.3168/jds.2018-14534. van Zijderveld, S. M., Gerrits, W. J. J., Apajalahti, J. A., Newbold, J. R., Dijkstra, J., Leng, R. A. & Perdok, H. B. (2010). Nitrate and sulfate: Effective alternative hydrogen sinks for mitigation of ruminal methane production in sheep. Journal of Dairy Science, 93, 5856–5866. Vijn, S., Compar, D. P., Dutta, N., Foukis, A., Hess, M., Hristov, A. N., Kalscheur, K. F., Kebreab, E., Nuzhdin, S. V., Price, N. N., Sun, Y., Tricarico, J. M., Turzillo, A., Weisbjerg, M. R., Yarish, C. & Kurt, T. D. (2020). Key Considerations for the Use of Seaweed to Reduce Enteric Methane Emissions From Cattle. Front. Veterinary Science, 7, 597430. https://doi.org/10.3389/fvets.2020.597430. Vyas, D., Alemu, A. W., McGinn, S. M., Duva, l. S. M., Kindermann, M. & Beauchemin, K. A. (2018). The combined effects of supplementing monensin and 3-nitrooxypropanol on methane emissions, growth rate, and feed conversion efficiency in beef cattle fed high-forage and high-grain diets. Journal of Animal Science, 96(7), 2923-2938. Vyas, D., McGinn, S. M., Duval, S. M., Kindermann, M. & Beauchemin, K. A. (2016). Effects of sustained reduction of enteric methane emissions with dietary supplementation of 3-nitrooxypropanol on growth performance of growing and finishing beef cattle. Journal of Animal Science, 94(5), 2024-2034. Waghorn, G. C., Clark, H., Taufa, V. & Cavanagh, A. (2008). Monensin controlled-release capsules for methane mitigation in pasture-fed dairy cows. Australian Journal of Experimental Agriculture, 48, 65-68. doi: 10.1071/EA07299. Waghorn, J. H., Niezen, G. C., Graham, T., Carter, J. L. & Leathwick, D. M. (2002). The effect of diet fed to lambs on subsequent development of Trichostrongylus colubriformis larvae in vitro and on pasture. Veterinary Parasitology, 105, 269-283. Wallace, R. J. & Chesson, A. (2008). Biotechnology in animal feeds and animal feeding. John Wiley & Sons. Wedlock, D. N., Janssen, P. H., Leahy, S. C., Shu, D., Buddle, B. M., 1987. Progress in the development of vaccines against parasitic diseases. Animal, 7(2), 244–252. Wang B., Jia, M., Fang, L., Jiang, L. & Li, Y. (2018). Effects of eucalyptus oil and anise oil supplementation on rumen fermentation characteristics, methane emission, and digestibility in sheep. Journal of Animal Science, 96, 3460-3470. Wedlock, D. N., Janssen, P. H., Leahy, S. C., Shu, D. & Buddle, B. M. (1987). Progress in the development of vaccines against parasitic diseases. Animal, 7(2), 244–252. Wild, K. J., Steingaß, H. & Rodehutscord, M. (2019). Variability of in vitro ruminal fermentation and nutritional value of cell disrupted and nondisrupted microalgae for ruminants. GCB Bioenergy, 11(1), 345-359. Woodward, S. L., Waghorn, G. C. & Laboyrie, P. (2004). Condensed tannins in bird’s foot trefoil (Lotus corniculatus) reduced methane emissions from dairy cows. Proceedings of the New Zealand Society of Animal Production, 64, 160–164. Woodward, S. L., Waghorn, G. C., Ulyatt, M. J. & Lassey, K. R. (2001). Early indications that feeding Lotus will reduce methane emissions from ruminants. In Proceedings-New Zealand Society of Animal Production, 61, 23-26. Yadeghari, S., Malecky, M., Banadaky, M. D. & Navidshad, B. (2015). Evaluating in vitro dose-response effects of Lavandula officinalis essential oil on rumen fermentation characteristics, methane production and ruminal acidosis. In Veterinary Research Forum, 6, 285. Faculty of Veterinary Medicine, Urmia University, Urmia, Iran. Yang, W. Z., Benchaar, C., Ametaj, B. N., Chaves, A. V., He, M. L. & McAllister, T. A. (2007). Effects of garlic and juniper berry essential oils on ruminal fermentation and on the site and extent of digestion in lactating cows. Journal of Dairy Science, 90, 5671-5681. Zhou, R., Wu, J., Lang, X., Liu, L., Casper, D. P. & Wang, C. et al. (2020). Effects of oregano essential oil on in vitro ruminal fermentation, methane production, and ruminal microbial community. Journal of Dairy Science, 103, 2303-2314.
|
|
| Дата на публикуване: 2024-02-28
Свали пълен текст