Influence of the addition of the prebiotic Immunobeta and its combination with the probiotic Zoovit on the development of the digestive system and the microbiological analysis of rumen and intestinal contents in Ile de France lambs
Ivan Slavov

, Nikolay Ivanov

, Stayka Laleva

Abstract: The aim of the study was to determine the effect of taking the prebiotic Immunobeta and a combination of the prebiotic Immunobeta + probiotic Zoovit, on the development of the digestive tract and the microbial composition in lambs from Ile de France. The object of the study were 45 lambs of the Ile de France breed, divided into three groups. The first experimental group of lambs received 8 g of the prebiotic Immunobeta, and those from the second experimental group the same amount of prebiotic + 4 g of the probiotic Zoovit. At the end of the experiment, 5 male lambs from each group were slaughtered. The volume of the rumen, the length of the papillae and the intestines were determined, and microbiological studies were performed. An increase in the small intestine was found in the lambs from I and II experimental groups, in the large intestine in animals from II and the control, as well as a greater capacity of the rumen in the lambs from II experimental group compared to the control (P˃0.05). The length of the rumen papillae in lambs from experimental groups I and II was greater than in the control (P˃0.05). In the lactic acid bacteria in the rumen, we found a decrease in the group receiving the synbiotic compared to the first experimental and control groups, and in the small and large intestines it was the lowest in the group receiving Immunobeta compared to the other two groups.
Keywords: Ile-de-France lambs; Immunobeta; prebiotics; probiotics; rumen contents and intestinal contents; Zoovit
Citation: Slavov, I., Ivanov, N. & Laleva, S. (2025). Influence of the addition of the prebiotic Immunobeta and its combination with the probiotic Zoovit on the development of the digestive system and the microbiological analysis of rumen and intestinal contents in Ile de France lambs. Bulgarian Journal of Animal Husbandry, 62(2), 11-20.
References: (click to open/close) | Arne, A. & Ilgaza, A. (2021). Prebiotic and synbiotic effect on rumen papilla length development and rumen pH in 12-week-old calves. Veterinary World, 14(11), 2883-2888. https://doi.org/10.14202/vetworld.2021.2883-2888. Brewer, M. T., Anderson, K. L., Yoon, I., Scott, M. F. & Carlson, S. A. (2014). Amelioration of salmonellosis in pre-weaned dairy calves fed Saccharomyces cerevisiae fermentation products in feed and milk replacer. Veterinary Microbiology, 172(1-2), 248-255. https://doi.org/10.1016/j.vetmic.2014.05.026. Celi, P., Cowieson, A. J., Fru-Nji, F., Steinert, R. E., Kluenter, M. A. & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88-100. https://doi.org/10.1016/j.anifeedsci.2017.09.012. Chapman, C. M. C., Gibson, G. R. & Rowland, I. (2011). Health benefits of probiotics: are mixtures more effective than single strains. European Journal of Nutrition, 50, 1-17. https://doi.org/10.1007/s00394-010-0166-z. Costa, N. A., Pansani, A. P., Castro, C. H., Colugnati, D. B., Xaxier, C. H., Guimarães, K. C., Rabelo, L. A., Nunes-Souza, V., Caixeta, L. F. S. & Ferreira R. N. (2019). Milk restriction or oligosaccharide supplementation in calves improves compensatory gain and digestive tract development without changing hormone levels. PLoS ONE, 14(3), e0214626. https://doi.org/10.1371/journal. Doyle, N., Mbandlwa, P., Kelly, W. J., Attwood, G., Li, Y., Ross, R. P., Ross, Stanton, C. & Leahy, S. (2019). Use of Lactic Acid Bacteria to Reduce Methane Production in Ruminants, a Critical Review. Front. Microbiol, 10, 2207. doi: 10.3389/fmicb.2019.02207. Du, R., Jiao, S., Dai, Y., An, J., Lv, J., Yan, X., Wang, J. & Han, B. (2018). Probiotic Bacillus amyloliquefaciens C-1 Improves Growth Performance, Stimulates GH/IGF-1, and Regulates the Gut Microbiota of Growth-Retarded Beef Calves. Front. Microbiol. 9, 2006. doi: 10.3389/fmicb.2018.02006. Ford, A. C., Quigley, E. M. M., Lacy, B. E., Lembo, A. J., Saito, Y. A., Schiller, L. R., Soffer, E. E., Spiegel, B. M. R. & Moayyedi, R. (2014). Efficacy of prebiotics, probiotics, and synbiotics in irritable bowel syndrome and chronic idiopathic constipation: systematic review and meta-analysis. Am. J. Gastroenterol, 109(10), 1547-1562. doi: 10.1038/ajg.2014.202. Ganeva, Z. (2016). Rediscovering statistics with IBM SPSS statistics. Sofia, Elestra, 494 (Bg). Graham, C. & Simmons, N. L. (2005). Functional organization of the bovine rumen epithelium. AJP-Regul Integr Comp Physiol, 288(1), 173-181. doi:10.1152/ajpregu.00425.2004. Hu, Q. Y., Man, J. J., Luo, J., Cheng, F., Yang, M., Lin, G. & Wang, P. (2024). Early-life supplementation with mannan-rich fraction to regulate rumen microbiota, gut health, immunity, and growth performance in dairy goat kids. Journal of Dairy Science, 107(11), 9322-9333. https://doi.org/10.3168/jds.2024-24903. Jinturkar, A. S., Gujar, B. V., Chauhan, D. S. & Patil, R. A. (2009). Effect of feeding probiotics on the growth performance and feed conversion efficiency in goat. Indian J. Anim. Res, 43(1), 49-52. Jonova, S., Ilgaza, A. & Zolovs, M. (2021). The Impact of Inulin and a Novel Synbiotic (Yeast Saccharomyces cerevisiae Strain 1026 and Inulin) on the Development and Functional State of the Gastrointestinal Canal of Calves. Veterinary Medicine International, 1, 1-9. https://doi.org/10.1155/2021/8848441. Khan, R. U., Naz, S. N. S., Dhama, K. D. K., Tiwari, R. T. R., Abdelrahman, M. M., Alhidary, I. A. & Zahoor, A. Z. A. (2016). Direct-Fed Microbial: beneficial applications, modes of action and prospects as a safe tool for enhancing ruminant production and safeguarding health. International Journal of Pharmacology, 12(3), 220-231. Li, P., Niu Q., Wei, Q., Zhang, Y., Ma, X., Kim, S. W., Lin, M. & Huang, R. (2017). Microbial shifts in the porcine distal gut in response to diets supplemented with Enterococcus Faecalis as alternatives to antibiotics. Sci Rep ,7(1), 41395. https://doi.org/10.1038/srep41395. Mani, S., Aiyegoro, O. A. & Adeleke, M. A. (2021). Characterization of Rumen Microbiota of Two Sheep Breeds Supplemented With Direct-Fed Lactic Acid Bacteria. Front. Vet. Sci. 7, 570074, https://doi.org/10.3389/fvets.2020.570074. Mao, H., Ji, W., Yun, Y., Zhang, Y., Li, Z. & Wang, C. (2023). Influence of probiotic supplementation on the growth performance, plasma variables, and ruminal bacterial community of growth-retarded lamb. Front. Microbiol, 14, 1216534. doi:10.3389/fmicb.2023.1216534. Moarrab, A., Ghoorchi, Т., Ramezanpour, С., Ganji, F. & Koochakzadeh, A. R. (2016). Effect of Synbiotic on Performance, Intestinal Morphology, Fecal Microbial Population and Blood Metabolites of Suckling Lambs. Iranian Journal of Applied Animal Science, 6(3), 621-628. Mohammed, S. F., Mahmood F. A. & Abas, E. R. (2018). A review on effects of yeast (Saccharomyces cerevisiae) as feed additives in ruminants performance. Journal of Entomology and Zoology Studies, 6(2), 629-635. Ordinance № 22 оf 14 December 2005 on minimization of animal suffering during slaughter or killing - https://lex.bg/laws/ldoc/2135526211. Оrdinance № 26 of 28 February 2006 on conditions for the protection and welfare of animals during their transport - https://lex.bg/laws/ldoc/2135518328. Ordinance No 40 of 2 December 2008 on the conditions for raising of agricultural animals, considering their physiolog-ical and behavioural characteristics – https://lex.bg/laws/ldoc/2135609448. Park, J., Kwak, M-J., Kang, M-G., Cho, D-Y., Kim, J. N., Choi, I-G. & Kim, Y. (2024). Metabolic-methane mitigation by combination of probiotic Escherichia coli strain Nissle 1917 and biochar in rumen fluid in vitro fermentation of dairy cow. Journal of Environmental Chemical Engineering, 12(5), 113977, https://doi.org/10.1016/j.jece.2024.113977. Prebiotic manufacturer Immunobeta- http://chemifarma.it/multi/?lang=en. Renjia, D., Jiao, S., Dai, Y., An, J., Lv, J., Yan, X., Wang, J. & Han, B. (2018). Probiotic Bacillus amyloliquefaciens C-1 improves growth performance, stimulates GH/IGF-1, and regulates the gut microbiota of growth-retarded beef calves. Frontiers in Microbiology, 9, 2006. https://doi.org/:10.3389/fmicb.2018.02006. Seo, J. K., Kim, S-W., Kim, M. H., Upadhaya, S. D., Kam, D. K. & Ha, J. K. (2010). Direct-fed Microbials for Ruminant Animals. Asian-Australasian Journal of Animal Sciences, 23(12), 1657-1667. https://doi.org/10.5713/ajas.2010.r.08. Xiao, J. X., Alugongo, G. M., Chung, R., Dong, S. Z., Li, S. L., Yoon, I., Wu, Z. H. & Cao, Z. J. (2016). Effects of Saccharomyces cerevisiae fermentation products on dairy calves: Ruminal fermentation, gastrointestinal morphology, and microbial community. Journal of Dairy Science, 99(7), 5401-5412. https://doi.org/10.3168/jds.2015-10563. Yeoman, C. J. & White, B. A. (2014). Gastrointestinal Tract Microbiota and Probiotics in Production Animals. Annu. Rev. Anim. Biosci, 2, 469-486. https://doi.org/10.1146/annurev-animal-022513-114149. Zapata, O., Cervantes, A., Barreras, A., Monge-Navarro, F., González-Vizcarra, V. M., Estrada-Angulo, A., Urías-Estrada, J. D., Corona, L., Zinn, R. A., Martínez-Alvarez I. G. & Plascencia A. (2021). Effects of single or combined supplementation of probiotics and prebiotics on ruminal fermentation, ruminal bacteria and total tract digestion in lambs. Small Ruminant Research, 204, 106538. https://doi.org/10.1016/j.smallrumres.2021.106538. Zulfiqar, A. & Bala, B. S. (2016). Basic statistical tools in research and data analysis. Indian Journal of Anaesthesia, 60(9), 662-669. https://doi.org/ 10.4103/0019-5049.190623. |
|
| Date published: 2025-04-29
Download full text