Performance, egg quality characteristics, serum parameters, blood minerals and bone mineralisation of laying chickens fed bone dust as calcium source
Olayemi Wasiu Ajani
, Oso Abimbola Oladele, Williams Gabriel Adedotun
, Ojo Oluwaseyi Temitope, Omofunmilola Eunice Opeol
Abstract: The study investigated the effect of dietary inclusion of bone dust as a calcium source on performance, egg quality characteristics, serum parameters, blood minerals and bone mineralisation of laying chickens. A total of 128 point of lay birds (1470-1550g) were allotted on a weight equalisation basis to four dietary treatments. Each treatment consists of four replicates having 8 birds per replicate. The diets were designated T1, T2, T3 and T4 in which T1 is the diet with dicalcium phosphate (DCP), T2 is the diet with bone meal, T3 is the diet with 50% bone dust and 50% DCP and T4 is the diet with 100% bone dust. The experiment lasted for eight weeks; laying performance and egg qualities (internal and external) were evaluated on a weekly basis. Serum parameters, blood minerals and bone mineralisation were carried out at the end of the study. Data collected were subjected to a one-way analysis of variance using Minitab statistical software (17.0) and significant means were separated using Tukey’s test. The inclusion of 50% and 100% dust resulted in increased (P<0.05) daily feed intake (DFI). The use of 100% bone dust in the diet of layers resulted in the highest (P<0.05) number of eggs laid (NEL) (293.00) and Hen-day egg production (HDEP) (118.33 %). Eggshell thickness (EST) was highest for layers fed T3 and T4 diets. The highest (P<0.05) albumin height (AH) (10.04 mm) and Haugh unit (Hu) (94.62 %) was observed for layers fed T4 diet. Layers fed T1 and T4 diets had higher (P<0.05) total protein and globulin than other treatments. Calcium and phosphorus content in blood was highest (P<0.05) for layers fed T1 diet. Bone calcium and phosphorus were highest (P<0.05) for layers fed the T3 diet but lowest for those fed the T1 diet. It was concluded that bone dust can be included in the diet of layers at 50 and 100% for better performance and egg quality without negative effects on blood and mineral composition.
Keywords: bone dust; egg quality; layers; mineralisation; performance
Citation: Olayemi, W. A., Oso, A. O., Williams, G. A., Ojo, O. T. & Omofunmilola, E. O. (2024). Performance, egg quality characteristics, serum parameters, blood minerals and bone mineralisation of laying chickens fed bone dust as calcium source. Bulgarian Journal of Animal Husbandry, 61(1), 19-30.
References: (click to open/close) | Adeyemo, G. O., Abioye, S. A. & Aderemi, F. A. (2012). The effect of varied dietary crude protein levels with balanced amino acids on performance and egg quality characteristics of layers at first laying phase. Food and Nutrition Sciences, 3(4), 526-529. http://doi.org/10.4236/fns.2012.34074. Ahmed, N. M., Abdel Atti, K. A., Elamin, K. M., Dafalla, K. Y., Malik, H. E. E. & Dousa, B. M. (2013). Effect of dietary calcium sources on laying hens’ performance and egg quality. Journal of Animal Production Advances, 3(7), 226–231. https//doi.org/10.5455/japa.20130718034818. Anwar, M. N. (2017). Measurement of True Ileal Calcium Digestibility of Feed Ingredients for Broiler Chickens.PhD Thesis, Massey University, Palmerston North, New Zealand, 12-14. Arslan Kaya, H. & Macit, M. (2018). The effect of boron (Orthoboric acid) addition to the diets of laying hens in the last period of laying on egg shell quality, tibia biomechanics parameters and serum, kabuki and tibia mineral concentrations. Ataturk University Journal of Veterinary Sciences. Veterinary Sciences and Practices, 13(1), 42–53. http://doi.org/10.17094/ataunivbd.315617. Attia, Y. A., Al-Harthi, M. A. & Shiboob, M. M. (2014). Evaluation of quality and nutrient contents of table eggs from different sources in the retail market. Italian Journal of Animal Science, 13, 2. http://doi.org/10.4081/ijas.2014.3294. Barham, D. & Trinder, P. (1972). An improved colour reagent for the determination of blood glucose by the oxidase system. The Analyst, 97(151), 142–145. https://doi.org/10.1039/an9729700142. Bousnes, R. & Taussky, H. H. (1945). Colorimetric determination of creatinine by Jaffe Reaction. Journal of Biochemistry, 158, 581-591. Brelaz, K. C. B. T. R., Cruz, F. G. G., Rufino, J. P. F., Brasil, R. J. M., Silva, A. F. & Santos, A. N. A. (2021). Serum biochemistry profile of laying hens fed diets with fish waste oil. Brazilian Archive of Veterinary Medicine and Zootechnics, 73(1), 223-230. http://dx.doi.org/10.1590/1678-4162-11704. Buzinaro, E. F., Almeida, R. N. & Mazeto, G. M. (2006). Bioavailability of dietary calcium. Brazilian archives of endocrinology and metabolism, 50(5), 852–861. https://doi.org/10.1590/s0004-27302006000500005. Café, M. B., Rinaldi, F. P., Morais, H. R., Nascimento, M. R. B. de M., Mundim, A. V. & Marchini, C. F. P. M. (2012). Biochemical blood parameters of broilers at different ages under thermoneutral environment. World Poultry Congress at Salvador Bahia – Brazil, 5 - 9 August. 143-146. Capitelli, R. & Crosta, L. (2013). Overview of psittacine blood analysis and comparative retrospective study of clinical diagnosis, haematology and blood chemistry in selected psittacine species. The veterinary clinics of North America. Exotic animal practice, 16(1), 71–120. https://doi.org/10.1016/j.cvex.2012.10.002. Chen, Y. C. & Chen, M. (2004). Effect of calcium supplement particle size and source on the performance of laying chickens. Poultry Science, 56, 1641-1647. Colowick, S. P. & Kaplan, N. O. (1955). Method of enzymology. 2nd edition. New York Academic press, New York, 1-10. Gefu, J. O., Adeyinka, I. A. & Sekoni, A. A. (2002). A training manual on National Training Workshop on poultry production in Nigeria. National Training Workshop on Poultry Production in Nigeria. National Animal Production Research Institute (NAPRI), 1-6 September, 2002 Eds. Google Earth (2022). Google earth http//www.google.com.earth. Haugh, H. (1937). The Haugh Unit for Measuring Egg Quality. The U.S. Egg & Poultry Magazine, 43, 552-555, 572-573. Hazelwood, R. L. (2000). Pancreas in Sturkie Avian Physiology Ed C.C Whittow, Fifth Ed, Academic Press. Hoffmann-La Roche, F. (1988). Egg Yolk Pigmentation with Carophyll, 3rd ed.; Co. Ltd.: Basel, Switzerland. Kubi ́s, M., Kaczmarek, S., Hejdysz, M., Mikuła, R., Wi ́sniewska, Z., Pryszynska-Oszmałek, E., Kołodziejski, P., Sassek, M. & Rutkowki, A. (2020). Microbial phytase improves performance and bone traits in broilers fed diets based on soybean meal and white lupin (Lupinus albus) meal. Annals of Animal Science, 20(4), 1379-1394. https://doi.org/10.2478/aoas-2020-0048. Leeson, S. & Summers, J. D. (2008). Commercial poultry nutricion.2. ed. Ontario: Book University, 350. Lu, S. (2017). Calcium and bone metabolism indices. Advances in Clinical chemistry, 82, 1-46. http://doi.org/10.1016/bs.acc.2017.06.005. Lumeij, J. T. (2008). Avian clinical biochemistry. In: Kaneko, J.J., Harvey, J.W., Bruss, M.L., (Eds). Clinical biochemistry of domestic animals, Waltham; Academic Press. Scientific research journal, 839-872. Mendonça, D. da S., Lana, S. R. V., Lana, G. R. Q., Leão, A. P. A., Barros Júnior, R. F. de., Lima, L. A. dos A., Ayres, I. C. de B., Santos, D. S. & Silva, W.A. da. (2022). Different calcium sources on the productive performance and bone quality of meat quail. Ciência Rural, 52(6), e20210446. https://doi.org/10.1590/0103-8478cr20210446. Minitab 17 Statistical Software (2000) Computer Software. Minitab, Inc., State College, PA. http://www.minitab.com/. Narushin, V. G., Van Kepmen, T. A., Wineland, M. J. & Christensen, V. L. (2004). Comparing infrared spectroscopy and egg size measurements for predicting eggshell quality. Biosystems Engineering, 87(3), 367–373. https://doi.org/10.1016/j.biosystemseng.2003.12.006. Nutrient Requirement of Poultry, NRC. (1994). 9th edition. National Academic of Sciences– Nutritional Research Council, Washington, DC. Olabode, A. D. (2015). Performance and egg quality characteristics and serum biochemistry of laying birds fed diet containing neem leaf meal. A Ph.D Thesis, Department of Animal Science University of Nigeria, Nsukka. Olgun, O., Altay, Y. & Yildiz, A. O. (2018). Effects of carbohydrase enzyme supplementation on performance, eggshell quality, and bone parameters of laying hens fed on maize- and wheat-based diets. British Poultry Science, 59(2), 211–217. https://doi.org/10.1080/00071668.2018.1423677. Oluyemi, J. A. & Roberts, F. A. (2000). Poultry Production in Warm Wet Climates. Spectrum Books Limited, second edition, Ibadan, 244. Pelicia, K., Garcia, E., Móri, C., Faitarone, A. B. G., Silva, A. P., Molino, A. B., Vercese, F. & Berto, D. A. (2009). Calcium levels and limestone particle size in the diet of commercial layers at the end of the first production cycle. Brazilian Journal of Poultry Science, 11(2), 87-94. https://doi.org/10.1590/S1516-635X2009000200003. Pelicia, K., Garcia, E., Móri, C., Faitarone, A. B. G., Silva, A. P., Molino, A. B., Vercese, F. & Berto, D. A. (2009). Calcium levels and limestone particle size in the diet of commercial layers at the end of the first production cycle. Brazilian Journal of Poultry Science, 11(2), 87–94. https://doi.org/10.1590/S1516-635X2009000200003. Plumstead, P. W., Leytem, A. B., Maguire, R. O., Spears, J. W., Kwanyuen, P. & Brake, J. (2008). Interaction of calcium and phytate in broiler diets. 1. Effects on apparent prececal digestibility and retention of phosphorus. Poultry science, 87(3), 449–458. https://doi.org/10.3382/ps.2007-00231. Rajman, M., Juráni, M., Lamosová, D., Mácajová, M., Sedlacková, M., Kost'ál, L., Jezová, D. & Výboh, P. (2006). The effects of feed restriction on plasma biochemistry in growing meat type chickens (Gallus gallus). Comparative biochemistry and physiology. Part A, Molecular & integrative physiology, 145(3), 363–371. https://doi.org/10.1016/j.cbpa.2006.07.004. Rezende, M. S., Mundim, A. V., Fonseca, B. B., Miranda, R. L., Oliveira, Jr. W. & Lellis, C. G. (2017). Profile of Serum Metabolites and Proteins of Broiler Breeders in Rearing Age. Brazilian Journal of Poultry Science, 19(4), 583–586. https://doi.org/10.1590/1806-9061-2016-0338. Roeschlau, P., Bernt, E. & Gruber, W. (1974). Enzymatic determination of total cholesterol in serum. Zeitschrift fur klinische Chemie und klinische Biochemie, 12(5), 226. PMID: 4440114. Runknke I., Akter, Y., Sibanda, T. Z., Cowieson, A. I., Wilkinson, S., Maldonado, S., Singh, M., Hughes, P., Caporale, D., Bucker, S. & O’Shea, C. J. (2021). The response of layer hen productivity and egg quality to an additional limestone source when offered diets differing in calcium concentrations and the inclusion of phytase. Animals, 11(10), 2991. https://doi.org/10.3390/ani11102991. Safamehr, A., Langille, M., Anderson, D. & MacIsaac, J. (2013). Evaluation of composition and in vitro solubility rate of by-products of the Atlantic shellfish industry as alternative calcium sources. Journal of Applied Poultry Research, 22(3), 529-538. https://doi.org/10.3382/japr.2013-00752. Sarmiento-García, A., Gökmen, S., Sevim, B. & Olgun, O. (2022). A novel source of calcium: Effects of calcium pidolate concentration on egg quality in aged laying quails (Coturnix coturnix Japonica). The Journal of Agricultural Science, 160(6), 551-556. doi: 10.1017/S0021859622000600. Tsagari, A. (2020). Dietary protein intake and bone health. Journal of frailty, sarcopenia and falls, 5(1), 1–5. https://doi.org/10.22540/JFSF-05-001. Varley, H., Gowelock, A. H. & Bells, M. (1980). Determination of serum urea using the acetyl monoxide method. Practical biochemistry, 5th Edition. Williams Heinemann Medical books Ltd. London. Wang, J., Kong, F. & Kim, W. K. (2021). Effect of almond hulls on the performance, egg quality, nutrient digestibility, and body composition of laying hens. Poultry Science, 100(9), 101286. doi: 10.1016/j.psj.2021.101286. Wootton, T. D. (1964). Micro analysis in Medical Biochemistry, 4th edition. Churchill Ltd, London pp 409. Yan, F., Angel, R., Ashwell, C., Mitchell, A. & Christman, M. (2005). Evaluation of the broiler's ability to adapt to an early moderate deficiency of phosphorus and calcium. Poultry science, 84(8), 1232–1241. https://doi.org/10.1093/ps/84.8.1232. Zhang, L. H., He, T. F., Hu, J. X., Li, M. & Piao, X.S. (2020). Effects of normal and low calcium and phosphorus levels and 25-hydroxycholecalciferol supplementation on performance, serum antioxidant status, meat quality, and bone properties of broilers. Poultry science, 99(11), 5663–5672. https://doi.org/10.1016/j.psj.2020.07.008.
|
|
| Date published: 2024-02-26
Download full text